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6.4 Symmetric Matrices 

For projection onto a plane in R3 , the plane is full of eigenvectors (where P x = x). The 
other eigenvectors are perpendicular to the plane (where P x = 0). The eigenvalues 
A. = 1, 1, 0 are real. Three eigenvectors can be chosen perpendicular to each other. I have 
to write "can be chosen" because the two in the plane are not automatically perpendicular. 
This section makes that best possible choice for symmetric matrices: The eigenvectors of 
P = p T are perpendicular unit vectors. 

Now we open up to all symmetric matrices. It is no exaggeration to say that these 
are the most important matrices the world will ever see-in the theory of linear algebra 
and also in the applications. We come immediately to the key question about symmetry. 
Not only the question, but also the answer. 

What is special about A x = AX when A is symmetric? We are looking for special 
properties of the eigenvalues A. and the eigenvectors x when A = AT. 

The diagonalization A = SAS-1 will reflect the symmetry of A. We get some hint by 
transposing to AT = (S-I)T AST. Those are the same since A = AT. Possibly S-1 in the 
first form equals ST in the second form. Then ST S = I. That makes each eigenvector in 
S orthogonal to the other eigenvectors. The key facts get first place in the Table at the end 
of this chapter, and here they are: 
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Those n orthonormal eigenvectors go into the columns of S. Every symmetric matrix can 
be diagonalized. Its eigenvector matrix S becomes an orthogonal matrix Q. Orthogonal 
matrices have Q-l = QT-what we suspected about S is true. To remember it we write 
S = Q, when we choose orthonormal eigenvectors. 

Why do we use the word "choose"? Because the eigenvectors do not have to be unit 
vectors. Their lengths are at our disposal. We will choose unit vectors-eigenvectors of 
length one, which are ortHonormal and not just orthogonal. Then SAS-1 is in its special 
and particular form QAQT for symmetric matrices: 

•.. (SP¢¢lra[· •• Tfl~Qr~~)' •... ··.·!verY'."sYrnnietrie·matrix .. has.·.theJactorization···A. .......... 'QfAQT ·.with 
,rea1.jei&~m¥~~~~Ap •• ~.M~ii:?t1Ji~Il0rm¥~ig¢n,y:e9!9ts.ip .. ~'i ............ @,,:: . 

. '.-'-"--",' -, . 

. ''-::~_'. ··,p"-:L:,,.c. -', :',' :"\ 

$Y~ItJ.~l~lc,,4~~g9iia4i~~tlpl) " 
- ',. ". - .,', ",,\. '.:>.;""""",.:. ":,,-:"-:,',";':-'" ',":" ,', -,." ... : ." 

It is easy to see that QAQT is symmetric. Take its transpose. You get (QT)T A T QT, which 
is QAQT again. The harder part is to prove that every symmetric matrix has real A. 's and 
orthonormal x's. This is the "spectral theorem" in mathematics and the "principal axis 
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theorem" in geometry and physics. We have to prove it! No choice. I will approach the 
proof in three steps: 

1. By an example, showing real A'S in A and orthonormal x's in Q. 

2. By a proof of those facts when no eigenvalues are repeated. 

3. By a proof that allows repeated eigenvalues (at the end of this section). 

Example 1 Find the A'S and x's when A = [; !] and A - AI = [1 2 A 4 2 A]' 

Solution The determinant of A - AI is A 2 - SA. The eigenvalues are 0 and S (both real). 
We can see them directly: A = 0 is an eigenvalue because A is singular, and A = S matches 
the trace down the diagonal of A: 0 + S agrees with 1 + 4. 

Two eigenvectors are (2, -1) and (1,2)-orthogonal but not yet orthonormal. The 
eigenvector for A = 0 is in the nullspace of A. The eigenvector for A = S is in the column 
space. We ask ourselves, why are the nullspace and column space perpendicular? The 
Fundamental Theorem says that the nullspace is perpendicular to the row space-not the 
column space. But our matrix is symmetric! Its row and column spaces are the same. Its 
eigenvectors (2, -1) and (1,2) must be (and are) perpendicular. 

These eigenvectors have length ,,;s. Divide them by .J5 to get unit vectors. Put those 
into the columns of S (which is Q). Then Q-I AQ is A and Q-I = QT: 

-1 1 [2 -1] [1 2] 1 [2 1] [0 0] Q AQ =,,;s 1 2 2 4 .j5 -1 2 = 0 S = A. 

Now comes the n by n case. The A'S are real when A = AT and Ax = AX . 
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Proof Suppose that Ax = AX. Until we know otherwise, A might be a complex number 
a + ib (a and b real). Its complex conjugate is A = a - ib. Similarly the components 
of x may be complex number~, and switching the signs of their imaginary parts gives x. 
The good thing is that A times x is always the conjugate of A times x. So we can take 
conjugates of Ax = AX, remembering that A is real: 

A x = A x leads to A x = A x. Transpose to x T A = X T A. (1) 

Now take the dot product of the first equation with x and the last equation with x: 

and also (2) 

The left sides are the same so the right sides are equal. One equation has A, the other 
has A. They multiply x T x = IXl12 + IX212 + ... = length squared which is not zero. 
Therefore A must equal A, and a + i b equals a - i b. The imaginary part is b = O. Q.E.D. 
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The eigenvectors come from solving the real equation (A - Al)X = O. So the x's are 
also real. The important fact is that they are perpendicular. 

Proof Suppose Ax = AIX and Ay = A2Y. We are assuming here that Al i= A2. Take 
dot products of the first equation with y and the second with x : 

Use AT = A (3) 

The left side is x T Aly , the right side is x T A2y . Since Al i= A2, this proves that x T y = O. 
The eigenvector x (for A I) is perpendicular to the eigenvector y (for A2). 

Example 2 The eigenvectors of a 2 by 2 symmetric matrix have a special form: 

Not widely known A=[~ ~] has XI=[AI~a] and X2=[A2;C]. (4) 

This is in the Problem Set. The point here is that x I is perpendicular to x 2: 

XTX2 = b(A2 -c) + (AI -a)b = b(AI + A2 -a -c) = o. 

This is zero because A I + A2 equals the trace a + c. Thus x T x 2 = O. Eagle eyes might 
notice the special case a = c, b = 0 when x I = X 2 = O. This case has repeated 
eigenvalues, as in A = I. It still has perpendicular eigenvectors (1,0) and (0, 1). 

This example shows the main goal of this section-to diagonalize symmetric matrices 
A by orthogonal eigenvector matrices S = Q. Look again at the result: 

Symmetry A = SAS-I becomes A = QAQT with QT Q = I. 

This says that every 2 by 2 symmetric matrix looks like 

\ T [ A=QAQ = Xl (5) 

The columns x I and x 2 multiply the rows A I X T and A2X i to produce A: 

Sum of rank-one matrices (6) 

This is the great factorization QAQT, written in terms of A 's and x's. When the symmetric 
matrix is n by n, there are n columns in Q multiplying n rows in QT. The n products x i x T 
are projection matrices. Including the A's, the spectral theorem A = QAQT for symmetric 
matrices says that A is a combination of projection matrices: 

Ai = eigenvalue, Pi = projection onto eigenspace. 
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Complex Eigenvalues of Real Matrices 

Equation (1) went from A x = 1 x to A x = A x. In the end, A and x were real. Those two 
equations were the same. But a non symmetric matrix can easily produce A and x that are 
complex. In this case, A x = A x is different from A x = A x. It gives us a new eigenvalue 
(which is A) and a new eigenvector (which is x): 

Example 3 A = [cos (J - sin (J ] has 1 = cos e + i sin e and A = cos e - i sin e. ~(J ~(J 1 2 

Those eigenvalues are conjugate to each other. They are A and A. The eigenvectors 
must be x and x, because A is real: 

This is A x A - [cos e - sin e] [ 1] ( e ., e) [ 1] x - sl'n e e . = cos + 1 sm . cos -l -1 
(7) 

This is AX Ax -_ [co. s e - sin e] [ 1] ( e ., e) [ I] sm e cos e i = cos - 1 sm i' 

Those eigenvectors (1, -i) and (1, i) are complex conjugates because A is real. 
For this rotation matrix the absolute value is 111 = I, because cos2 e + sin2 e = 1. 

This fact IA 1 = 1 holds for the eigenvalues of every orthogonal matrix. 
We apologize that a touch of complex numbers slipped in. They are unavoidable even 

when the matrix is real. Chapter 10 goes beyond complex numbers A and complex vectors 
to complex matrices A. Then you have the whole picture. 

We end with two optional discussions. 

Eigenvalues versus Pivots 

The eigenvalues of A are very different from the pivots. For eigenvalues, we solve 
det(A - AI) = O. For pivots, we use elimination. The only connection so far is this: 

product of pivots = determinant = product of eigenvalues. 

We are assuming a full set of pivots d 1, ... , dn. There are n real eigenvalues AI, ... , An. 
The d's and A'S are not the same, but they come from the same matrix. This paragraph is 
about a hidden relation. For symmetric matrices the pivots and the eigenvalues have the 
same signs: 

The number of positive eigenvalues of A = AT equals the number of positive pivots. 
Special case: A has all Ai > 0 if and only if all pivots are positive. 

That special case is an all-important fact for positive definite matrices in Section 6.5. 
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Example 4 This symmetric matrix A has one positive eigenvalue and one positive pivot: 

Matching signs A = [~ i] has pivots 1 and -8 
eigenvalues 4 and -2. 

The signs of the pivots match the signs of the eigenvalues, one plus and one minus. 
This could be false when the matrix is not symmetric: 

Opposite signs B _ [I 6] 
- -I -4 

has pivots 1 and 2 
eigenvalues -1 and -2. 

The diagonal entries are a third set of numbers and we say nothing about them. 

Here is a proof that the pivots and eigenvalues have matching signs, when A = AT. 

You see it best when the pivots are divided out of the rows of U. Then A is LDLT. 
The diagonal pivot matrix D goes between triangular matrices Land L T : 

[ ~ i] = [~ ~] [1 -8] [b i] This is A = L D LT. It is symmetric. 

Watch the eigenvalues when Land L T move toward the identity matrix:A ~ D. 

The eigenvalues of LDLT are 4 and -2. The eigenvalues of IDIT are 1 and -8 (the 
pivots!). The eigenvalues are changing, as the "3" in L moves to zero. But to change sign, 
a real eigenvalue would have to cross zero. The matrix would at that moment be singular. 
Our changing matrix always has pivots 1 and -8, so it is never singular. The signs cannot 
change, as the A's move to the d's. 

We repeat the proof for any A = LDLT. Move L toward I, by moving the off
diagonal entries to zero. The pivots are not changing and not zero. The eigenvalues A of 
LDLT change to the eigenvalues d of I DIT. Since these eigenvalues cannot cross zero as 
they move into the pivots, their signs cannot change. Q.E.D. 

This connects the two halves of applied linear algebra-pivots and eigenvalues. 

All Symmetric Matrices are Diagonalizable 

When no eigenvalues of A are repeated, the eigenvectors are sure to be independent. 
Then A can be diagonalized. But a repeated eigenvalue can produce a shortage of 
eigenvectors. This sometimes happens for nonsymmetric matrices. It never happens 
for symmetric matrices. There are always enough eigenvectors to diagonalize A = AT. 

Here is one idea for a proof. Change A slightly by a diagonal matrix diag( c , 2c, ... , n c). 
If c is very small, the new symmetric matrix will have no repeated eigenvalues. Then we 
know it has a full set of orthonormal eigenvectors. As c ~ 0 we obtain n orthonormal 
eigenvectors of the original A-even if some eigenvalues of that A are repeated. 

Every mathematician knows that this argument is incomplete. How do we guarantee 
that the small diagonal matrix will separate the eigenvalues? (I am sure this is true.) 
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A different proof comes from a useful new factorization that applies to all matrices, 
symmetric or not. This new factorization immediately produces A = QAQT with a full 
set of real orthonormal eigenvectors when A is any symmetric matrix. 

-T 
Every square matrixfactors into A=QTQ-I where T is upper triangular and Q =Q-l. 

If A has real eigenvalues then Q and T can be chosen real: Q T Q = I. 

This is Schur's Theorem. We are looking for A Q = QT. The first column q 1 of Q must 
be a unit eigenvector of A. Then the first columns of A Q and Q Tare Aql and tIl q l' But 
the other columns of Q need not be eigenvectors when T is only triangular (not diagonal). 
So use any n - 1 columns that complete qi to a matrix Q 1 with orthonormal columns. At 
this point only the first columns of Q and T are set, where Aql = tIl q 1 : 

[ 
qT ] [ ] [tl1 ...] Q~AQI = ;~ Aql" Aqn = ~ Gil. (8) 

Now I will argue by "induction". Assume Schur's factorization A2 = Q2T2Q21 is 
possible for that matrix A2 of size n - 1. Put the orthogonal (or unitary) matrix Q2 and the 
triangular T2 into the final Q and T: 

Q -- QI [0
1 

Q02] and T -- [toll 'T'
2
'] and A Q = Q T as desired. 

Note I had to allow q 1 and Q 1 to be complex, in case A has complex eigenvalues. 
But if tIl is a real eigenvalue, then q 1 and Q 1 can stay real. The induction step keeps 
everything real when A has real eigenvalues. Induction starts with I by I, no problem. 

Proof that T is the diagonal A when A is symmetric. Then we have A = Q AQ T. 

Every symmetric A has real eigenvalues. Schur's A = QTQT with QT Q = I means that 
T = Q T A Q. This is a symmetric matrix (its transpose is Q T A Q). Now the key point: 
If T is triangular and also symmetric, it must be diagonal: T = A. 

This proves A = QAQT. The matrix A = AT has n orthonormal eigenvectors. 

• REVIEW OF THE KEY IDEAS • 

1. A symmetric matrix has real eigenvalues and perpendicular eigenvectors. 

2. Diagonalization becomes A = QAQT with an orthogonal matrix Q. 

3. All symmetric matrices are diagonalizable, even with repeated eigenvalues. 

4. The signs ofthe eigenvalues match the signs of the pivots, when A = AT. 

5. Every square matrix can be "triangularized 01 by A = Q T Q -1. 



336 Chapter 6. Eigenvalues and Eigenvectors 

• WORKED EXAMPLES • 

6.4 A What matrix A has eigenvalues A = 1, -1 and eigenvectors Xl = (COS 8, sin 8) 
and x 2 = (- sin 8, cos 8)? Which of these properties can be predicted in advance? 

detA =-1 + and - pivot 

Solution All those properties can be predicted! With real eigenvalues in A and or
thonormal eigenvectors in Q, the matrix A = QAQT must be symmetric. The eigenvalues 
1 and -1 tell us that A2 = I (since A2 = 1) and A-I = A (same thing) and detA = -1. 
The two pivots are positive and negative like the eigenvalues, since A is symmetric. 

The matrix must be a reflection. Vectors in the direction of x 1 are unchanged by A 
(since A = 1). Vectors in the perpendicular direction are reversed (since A = -1). The 
reflection A = QAQT is across the "8-line". Write c for cos 8, s for sin 8: 

A = [c-s] [1 0] [ c s] = [C2_S2 
2cs ] = [COS28 sin28] 

S c 0 -1 -s c 2cs S2 - c2 sin28 -cos28 . 

Notice that x = (1,0) goes to Ax = (cos 28, sin 28) on the 28-line. And (cos 28, sin 28) 
goes back across the 8-line to x = (1,0). 

6.4 B Find the eigenvalues of A3 and B4 , and check the orthogonality of their first two 
eigenvectors. Graph these eigenvectors to see discrete sines and cosines: 

[ 2 -1 0] 
A3 = -1 2-1 

o -1 2 

1 -1 

B4 = 
-1 2 -1 

-1 2 -1 
-1 1 

The -1,2, -1 pattern in both matrices is a "second difference". Section 8.1 will explain 
how this is like a second derivative. Then Ax = AX and B x = AX are like d 2 x / d t 2 = AX. 
This has eigenvectors x = sin k t and x = cos k t that are the bases for Fourier series. The 
matrices lead to "discrete sines" and "discrete cosines" that are the bases for the Discrete 
Fourier Transform. This DFT is absolutely central to all areas of digital signal processing. 
The favorite choice for JPEG in image processing has been Bs of size 8. 

Solution The eigenvalues of A3 are A = 2 - .J2 and 2 and 2 + .J2. (see 6.3 B). Their 
sum is 6 (the trace of A 3 ) and their product is 4 (the determinant). The eigenvector matrix 
S gives the "Discrete Sine Transform" and the graph shows how the first two eigenvectors 
fall onto sine curves. Please draw the third eigenvector onto a third sine curve! 
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s= [ ~ _~ -[z ] 
Eigenvector matrix for A3 

,
';' .... "~ 

'. 
sin t 

O:-~:----~--+--, \, ,''l'r 

sin2t \ 

The eigenvalues of B4 are A = 2 - v'2 and 2 and 2 + v'2 and 0 (the same as for 
A 3 , plus the zero eigenvalue). The trace is still 6, but the determinant is now zero. The 
eigenvector matrix C gives the 4-point "Discrete Cosine Transform" and the graph shows 
how the first two eigenvectors fall onto cosine curves. (Please plot the third eigenvector.) 
These eigenvectors match cosines at the halfway points ~, 3: ' 5: ' 7: . 

1 1 1 1 .. -. • • • . 
" 

v'2 -1 1- v'2 
, . 

1 -1 
, 

C= 
, .. 

1- v'2 v'2-1 
. , 

1 -1 -I I~h-:-I 1 I 
1 -1 1 -1 0 rr . 7rr rr 

8 .. g 
Eigenvector matrix for B4 

. . 
'. , . .•.... 

Sand C have orthogonal columns (eigenvectors of the symmetric A3 and B4). 
When we multiply a vector by S or C, that signal splits into pure frequencies-as a musi
cal chord separates into pure notes. This is the most useful and insightful transform in all 
of signal processing. Here is a MATLAB code to create Bg and its eigenvector matrix C: 

n=8; e =ones(n-l, 1); B=2* eye(n)-diag(e, -1)-diag(e, 1); B(l,I)=I; B(n, n)=I; 
[C, A] = eig(B); 
plot(C( : ,1:4), '-0') 

Problem Set 6.4 

1 Write A as M + N, symmetric matrix plus skew-symmetric matrix: 

(MT = M, NT = -N). 

For any square matrix, M = A"';AT and N = __ add up to A. 

2 If C is symmetric prove that ATCA is also symmetric. (Transpose it.) When A is 6 
by 3, what are the shapes of C and AT CA? 
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3 Find the eigenvalues and the unit eigenvectors of 

[
2 2 2] 

A= 2 0 0 . 
200 

4 Find an orthogonal matrix Q that diagonalizes A = [-~ ~ ]. What is A? 

5 Find an orthogonal matrix Q that diagonalizes this symmetric matrix: 

[
1 0 2] 

A = 0 -1 -2 . 
2 -2 0 

6 Find all orthogonal matrices that diagonalize A = [1 ~ 12] 
16 . 

7 (a) Find a symmetric matrix [~ ~] that has a negative eigenvalue. 

(b) How do you know it must have a negative pivot? 

(c) How do you know it can't have two negative eigenvalues? 

8 If A 3 = 0 then the eigenvalues of A must be . Give an example that has 
A =1= O. But if A is symmetric, diagonalize it to prove that A must be zero. 

9 If)" = a + ib is an eigenvalue of a real matrix A,..Qten its conjugate A = a - ib is 
also an eigenvalue. (If Ax = AX then also Ax = AX.) Prove that every real 3 by 3 
matrix has at least one real eigenvalue. 

10 Here is a quick "proof" that the eigenvalues of all real matrices are real: 

False proof Ax = AX gives x T Ax = AX T X 
xTAx 

so ).. =-
xTx 

is real. 

Find the flaw in this reasoning-a hidden assumption that is not justified. You could 
test those steps on the 90° rotation matrix [0 -1; 1 0] with A = i and x = (i, 1). 

11 Write A and B in the form AIX IX T + A2x2x1 of the spectral theorem QAQT: 

12] 
16 (keep IIxIlI = IIx211 = 1). 

12 Every 2 by 2 symmetric matrix is AlxIxI + A2X2XI = AlP! + A2P2. Explain 
PI + P2 = xIxT + x2xI = I from columns times rows of Q. Why is PIP2 = O? 

13 What are the eigenvalues of A = [_g ~]? Create a 4 by 4 skew-symmetric matrix 
(AT = - A) and verify that all its eigenvalues are imaginary. 
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14 (Recommended) This matrix M is skew-symmetric and also Then all its 
eigenvalues are pure imaginary and they also have I A I = 1. (II M x II = II x II for every 
x so IIAx II = IIx II for eigenvectors.) Find all four eigenvalues from the trace of M: 

0 1 1 1 
1 -1 0 -1 1 

M=-
-1 1 0 -1 

can only have eigenvalues i or - i. 
~ 

-1 -1 1 0 

15 Show that A (symmetric but complex) has only one line of eigenvectors: 

A = [~ _~] is not even diagonalizable: eigenvalues A = 0, O. 

AT = A is not such a special property for complex matrices. The good property is 

AT = A (Section 10.2). Then all A'S are real and eigenvectors are orthogonal. 

16 Even if A is rectangular, the block matrix B = [1T ~] is symmetric: 

Bx = AX is which is 
Az =AY 

ATy = AZ. 

(a) Show that -A is also an eigenvalue, with the eigenvector (y, -z). 

(b) Show that AT Az = A 2 Z , so that A 2 is an eigenvalue of AT A. 

(c) If A = ! (2 by 2) find all four eigenvalues and eigenvectors of B. 

17 If A = [}] in Problem 16, find all three eigenvalues and eigenvectors of B. 

18 Another proof that eigenvectors are perpendicular when A = AT. Two steps: 

1. Suppose Ax = AX and Ay = Oy and A f:. O. Then y is in the nullspace 
and X is in the column space. They are perpendicular because . Go 
carefully-why are these subspaces orthogonal? 

2. If Ay = {3 y, apply this argument to A - {3!. The eigenvalue of A - {3! moves 
to zero and the eigenvectors stay the same-so they are perpendicular. 

19 Find the eigenvector matrix S for A and for B. Show that S doesn't collapse at 
d = 1, even though A = 1 is repeated. Are the eigenvectors perpendicular? 

[

-d 0 
B = 0 1 

o 0 
have A = 1, d, -d. 

20 Write a 2 by 2 complex matrix with AT = A (a "Hermitian matrix"). Find A} and A2 
for your complex matrix. Adjust equations (1) and (2) to show that the eigenvalues 
of a Hermitian matrix are real. 

Jason
高亮

Jason
高亮

Jason
高亮

Jason
高亮
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21 True (with reason) or false (with example). "Orthonormal" is not assumed. 

(a) A matrix with real eigenvalues and eigenvectors is symmetric. 

(b) A matrix with real eigenvalues and orthogonal eigenvectors is symmetric. 

(c) The inverse of a symmetric matrix is symmetric. 

(d) The eigenvector matrix S of a symmetric matrix is symmetric. 

22 (A paradox for instructors) If AAT = AT A then A and AT share the same eigen
vectors (true). A and AT always share the same eigenvalues. Find the flaw in this 
conclusion: They must have the same S and A. Therefore A equals AT. 

23 (Recommended) Which of these classes of matrices do A and B belong to: 
Invertible, orthogonal, projection, permutation, diagonalizable, Markov? 

I 
I 
I l] 

Which of these factorizations are possible for A and B: LU, QR, SAS-1, QAQT? 

24 What number bin [i~] makes A = QAQT possible? What number makes A = 
SAS-1 impossible? What number makes A-I impossible? 

25 Find all 2 by 2 matrices that are orthogonal and also symmetric. Which two numbers 
can be eigenvalues? 

26 This A is nearly symmetric. But its eigenvectors are far from orthogonal: 

[
1 10-15

] 
A = 0 1+10-15 has eigenvectors and [7] 

What is the angle between the eigenvectors? 

27 (MATLAB) Take two symmetric matrices with different eigenvectors, say A = [A g] 
and B = [r AJ. Graph the eigenvalues AI(A +tB) andA2(A +tB) for-8 < t < 8. 
Peter Lax says on 'page 113 of Linear Algebra that Al and A2 appear to be on a 
collision course at certain values of t. "Yet at the last minute they turn aside." How 
close do they come? 

Challenge Problems 

28 For complex matrices, the symmetry AT = A that produces real eigenvalues changes 

to AT = A. From det(A - AI) = 0, find the eigenvalues of the 2 by 2 "Hermitian" 

matrix A = [4 2 + i; 2 - i 0] = AT. To see why eigenvalues are real when 

AT = A, adjust equation (1) ofthe text to A x = A x. 

Transpose to xT AT = xT A. With AT = A, reach equation (2): A = A. 
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29 ~ ~ T T Normal matrices have A A = AA . For real matrices, A A = AA includes 
symmetric, skew-symmetric, and orthogonal. Those have real A, imaginary A, and 
IAI = 1. Other normal matrices can have any complex eigenvalues A. 
Key point: Normal matrices have n orthonormal eigenvectors. Those vectors Xi 

probably will have complex components. In that complex case orthogonality means 
x T x j = 0 as Chapter 10 explains. Inner products (dot products) become x T y. 

The test/or n orthonormal columns in Q becomes Q T Q = 1 instead 0/ QT Q = 1. 

A has 11 orthonormal eigenvectors (A = Q A Q T) if and only if A is normal. 

-T -T -T-T 
(a) Start from A = QA Q with Q Q = 1. Show that A A = AA : A is normal. 

-T -T -T 
(b) Now start from A A = A A . Schur found A = Q T Q for every matrix A, 

with a triangular T. For normal matrices we must show (in 3 steps) that this T 
will actually be diagonal. Then T = A. 

-T -T -T -T -T 
Step 1. Put A = Q T Q into A A = AA to find T T = T T . 

[
a b ] -T -T 

Step 2. Suppose T = 0 d has T T = TT . Prove that b = O. 

Step 3. Extend Step 2 to size n. A normal triangular T must be diagonal. 

30 If Amax is the largest eigenvalue of a symmetric matrix A, no diagonal entry can be 
larger than Amax. What is the first entry all of A = QAQT? Show why all < Amax. 

31 Suppose AT = -A (real antisymmetric matrix). Explain these facts about A: 

(a) x TAx = 0 for every real vector x. 

(b) The eigenvalues of A are pure imaginary. 

(c) The determinant of A is positive or zero (not negative). 

For (a), multiply out an example of x T Ax and watch terms cancel. Or reverse 
xT(Ax) to (Ax)Tx . For (b), Az = AZ leads to zT Az = AZTZ = Allzll2. Part(a) 
shows that zT Az = (x - i y ) T A (x + i y) has zero real part. Then (b) helps with (c). 

32 If A is symmetric and all its eigenvalues are A = 2, how do you know that A must 
be 21? (Key point: Symmetry guarantees that A is diagonalizable. See "Proofs of 
the Spectral Theorem" on web.mit.edu/18.06.) 

Jason
高亮
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6.5 Positive Definite Matrices 

This section concentrates on symmetric matrices that have positive eigenvalues. If sym
metry makes a matrix important, this extra property (all A > 0) makes it truly special. 
When we say special, we don't mean rare. Symmetric matrices with positive eigenvalues 
are at the center of all kinds of applications. They are called positive definite. 

The first problem is to recognize these matrices. You may say, just find the eigenvalues 
and test A > O. That is exactly what we want to avoid. Calculating eigenvalues is work. 
When the A'S are needed, we can compute them. But if we just want to know that they are 
positive, there are faster ways. Here are two goals of this section: 

• To find quick tests on a symmetric matrix that guarantee positive eigenvalues. 

• To explain important applications of positive definiteness. 

The A'S are automatically real because the matrix is symmetric. 

Start with 2 by 2. When does A = [~ ~] have Al > 0 and A2 > o? 

"'." '> .:,. 

i;~eei~i!1!Y:({/ij(J~f!I>~"at~po~itjv~ifqir4.q~lyjf, a > 0 and ac - b2 > o .. 

Al = [~ ~] is not positive definite because ac - b2 = 1 - 4 < 0 

A2 = [_~ -~] is positive definite because a = 1 and ac - b2 = 6 - 4 > 0 

A3 = [ - ~ _~] is not positive definite (even with det A = +2) because a = -1 

Notice that we didn't compute the eigenvalues 3 and -1 of AI. Positive trace 3 - 1 = 2, 
negative determinant (3)(-1) = -3. And A3 = -A2 is negative definite. The positive 
eigenvalues for A2 , two negative eigenvalues for A3. 

Proof that the 2 by itest is passed when Al > 0 and A2 > O. Their product AIA2 is 
the determinant so ac - b2 > O. Their sum is the trace so a + c > O. Then a and care 
both positive (if one of them is not positive, ac - b2 > 0 will fail). Problem 1 reverses the 
reasoning to show that the tests guarantee A I > 0 and A2 > O. 

This test uses the 1 by 1 determinant a and the 2 by 2 determinant ac - b2 • When A is 
3 by 3, det A > 0 is the third part of the test. The next test requires positive pivots. 

a>O and 
ac -b2 

--->0. 
a 
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a > 0 is required in both tests. So ac > b2 is also required, for the determinant test and 
now the pivot. The point is to recognize that ratio as the second pivot of A: 

The first pivot is a 
) 

The multiplier is b / a 

The second pivot is 
b2 ac - b2 

c-- = ---
a a 

This connects two big parts of linear algebra. Positive eigenvalues mean positive pivots 
and vice versa. We gave a proof for symmetric matrices of any size in the last section. The 
pivots give a quick test for A > 0, and they are a lot faster to compute than the eigenvalues. 
It is very satisfying to see pivots and determinants and eigenvalues come together in this 
course. 

Al = [~ i] 
pivots 1 and -3 

(indefinite) 

[ I -2] 
A2 = -2 6 

pivots 1 and 2 
(positive definite) 

[-1 2] 
A3 = 2-6 

pivots -1 and -2 
(negative definite) 

Here is a different way to look at symmetric matrices with positive eigenvalues. 

Energy-based Definition 

From Ax = AX, multiply by x T to get x T Ax = AX T x. The right side is a positive A times 
a positive number x T x = II X 112. So X T Ax is positive for any eigenvector. 

The new idea is that x T A x is positive for all nonzero vectors x, not just the eigen
vectors. In many applications this number xT Ax (or !x TAx) is the energy in the system. 
The requirement of positive energy gives another definition of a positive definite matrix. 
I think this energy-based definition is the fundamental one. 

Eigenvalues and pivots are two equivalent ways to test the new requirement xT Ax > O. 

Definition Ais positiv~.de.finite.;if~TA ~ .. :;.. .. Qfor.ev~pt "'fJ!l-g.¢rove¢t()i~>. 

x T Ax Ix il[: .. :l[~J . ax
2+ 2bx y + cy2 > O. (1) 

The four entries a, b, b, c give the four parts of x T Ax. From a and c come the pure squares 
ax2 and cy2. From band b off the diagonal come the cross terms bxy and byx (the same). 
Adding those four parts gives x T Ax. This energy-based definition leads to a basic fact: 

If A and B are symmetric positive definite, so is A + B. 

Reason: x T (A + B)x is simply x T Ax + X T Bx. Those two terms are positive (for x =f. 0) 
so A + B is also positive definite. The pivots and eigenvalues are not easy to follow when 
matrices are added, but the energies just add. 
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X T Ax also connects with our final way to recognize a positive definite matrix. 
Start with any matrix R, possibly rectangular. We know that A = RT R is square and 
symmetric. More than that, A will be positive definite when R has independent columns: 

If the columns of R are independent, then A = RT R is positive definite. 

Again eigenvalues and pivots are not easy. But the number xT Ax is the same as x T RT Rx. 
That is exactly (Rx)T(Rx)-another important proof by parenthesis! That vector Rx is 
not zero when x =1= 0 (this is the meaning of independent columns). Then x TAx is the 
positive number 1/ Rx 112 and the matrix A is positive definite. 

Let me collect this theory together, into five equivalent statements of positive definite
ness. You will see how that key idea connects the whole subject of linear algebra: pivots, 
determinants, eigenvalues, and least squares (from RT R). Then come the applications. 

--. -. _. . , 

lV~.I#1t'ii~Y/Ifl.,ftetti({fitlJ,ft'jx,.hiJS9fi,~j(jfllll!$~.fivep7;operfies,.·it hil.$themall: 
", .,:' .-':: .. '.- -"',,,.',",:-:-.: ..... ,',' --.'" , .. 

l~ .. ~i(~n~i~~i~;~r~pqSitiY~. 
,;~~ ·.~liiJ~piij.l~ftke,(~rmi",q."'ts,~t~ •• PQsitive. 

:~.~tl#eigl!~V41(lesate,ppsitiv~. 
, ' , 

, ' 

i4~it!~.isp~~itivee~¢~pt afx==O:'l'hisistneenetgy-based definition. 

" .. "5 •. A¢~rials.R;rR:for.amatrlx/R·wlthi1Jd~p~ii4~n,t~(}lzt1j(/i/s. 

The "upper left determinants" are 1 by 1,2 by 2, ... , n by n. The last one is the determinant 
of the complete matrix A. This remarkable theorem ties together the whole linear algebra 
course-at least for symmetric matrices. We believe that two examples are more helpful 
than a detailed proof (we nearly have a proof already). 

Example 1 Test these matrices A and B for positive definiteness: 

A= [ 2' -1 0] 
-~ -i -~ and B= 

Solution The pivots of A are 2 and ~ and 1, all positive. Its upper left determinants are 2 

and 3 and 4, all positive. The eigenvalues of A are 2 - --Ii and 2 and 2 + --Ii, all positive. 
That completes tests 1,2, and 3. 

We can write x T Ax as a sum of three squares. The pivots 2, ~, 1 appear outside the 

squares. The multipliers -! and - ~ from elimination are inside the squares: 

x T Ax = 2(x; - XIX2 + xi - X2 X 3 + xn Rewrite with squares 

= 2(Xl - !X2)2 + ~(X2 - ~X3)2 + 1(X3)2. This sum is positive. 
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I have two candidates to suggest for R. Either one will show that A = RT R is positive 
definite. R can be a rectangular first difference matrix, 4 by 3, to produce those second 
differences -1,2, -1 in A: 

[-! =~ -n = [~ 
-1 

1 
o -: j] 

The three columns of this R are independent. A is positive definite. 

1 
-1 
o 
o 

o 0 
1 0 

-1 1 
o -1 

Another R comes from A = LDLT (the symmetric version of A = LV). Elimination 
gives the pivots 2, ~, ~ in D and the multipliers -!, 0, -~ in L. Just put .Jij with L. 

[ 1 ] [2 ] [1 -! ] LDLT = -! 1 ~ I -~ = (L,JJ5)(L,JJ5)T = RT R. (2) 
o -~ 1 ~ 1 R is the Choleskyfactor 

This choice of R has square roots (not so beautiful). But it is the only R that is 3 by 3 
and upper triangular. It is the "Cholesky factor" of A and it is computed by MATLAB's 
command R = chol(A). In applications, the rectangular R is how we build A and this 
Cholesky R is how we break it apart. 

Eigenvalues give the symmetric choice R = Q.jA QT. This is also successful with 
RT R = QAQT = A. All these tests show that the -1,2, -1 matrix A is positive definite. 

Now tum to B, where the (1,3) and (3,1) entries move away from 0 to b. This b must 
not be too large! The determinant test is easiest. The 1 by 1 determinant is 2, the 2 by 2 
determinant is still 3. The 3 by 3 determinant involves b: 

detB = 4+2b-2b2 = (1 +b)(4-2b) must be positive. 

At b = -1 and b = 2 we get detB = O. Between b = -1 and b = 2 the matrix is 
positive definite. The comer entry b = 0 in the first matrix A was safely between. 

Positive Semidefinite Matrices 

Often we are at the edge of positive definiteness. The determinant is zero. The smallest 
eigenvalue is zero. The energy in its eigenvector is x T Ax = X TOX = O. These matrices 
on the edge are called positive semidefinite. Here are two examples (not invertible): 

[ 2 -1 -1] 
A = [; ~] and B = -1 2 -1 are positive semidefinite. 

-1 -1 2 

A has eigenvalues 5 and O. Its upper left determinants are 1 and 0. Its rank is only 1. This 
matrix A factors into RT R with dependent columns in R: 

Dependent columns [I 2] _ [1 0] [1 2] = RT R 
Positive semidefinite 2 4 - 2 0 ° 0 . 

If 4 is increased by any small number, the matrix will become positive definite. 
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The cyclic B also has zero determinant (computed above when b = -1). It is singular. 
The eigenvector x = (1, 1, 1) has B x = 0 and x T B x = o. Vectors x in all other directions 
do give positive energy. This B can be written as RT R in many ways, but R will always 
have dependent columns, with (1, 1, 1) in its nullspace: 

Second differences A 
from first differences RT R 
Cyclic A from cyclic R 

-1 2 -1 = 0 1 -1 -1 1 0 . 
[ 

2 -1 -1] [1 -1 0] [ 1 0 -1] 

-1 -1 2 -1 0 1 0 -1 1 

Positive semidefinite matrices have all A > 0 and all x T Ax > O. Those weak inequalities 
(> instead of > ) include positive definite matrices and the singular matrices at the edge. 

First Application: The Ellipse ax 2 + 2bxy + cy2 = 1 

Think of a tilted ellipse x T Ax = 1. Its center is (0,0), as in Figure 6.7a. Tum it to line up 
with the coordinate axes (X and Y axes). That is Figure 6.7b. These two pictures show the 
geometry behind the factorization A = QAQ-l = QAQT: 

1. The tilted ellipse is associated with A. Its equation is x T Ax = 1. 

2. The lined-up ellipse is associated with A. Its equation is XT AX = 1. 

3. The rotation matrix that lines up the ellipse is the eigenvector matrix Q. 

Example 2 Find the axes of this tilted ellipse 5x2 + 8xy + 5y2 = 1. 

Solution Start with the positive definite matrix that matches this equation: 

The equation is [x y] [~ ~] [;] = 1. The matrix is . A'. i.··'.: ..... -... -..... · ..... _ .. [·.· .. ··.-.... 45 .•.....•......... 4} 51' 

y Y 

1 

1 (1 1) 
3 .j2'.j2 (~,o) 

x 
-1 -1 1 

X 

xTAx = 1 XTAX = 1 

-1 (~,-~) 
Figure 6.7: The tilted ellipse 5x2 + 8xy + 5y2 = 1. Lined up it is 9X2 + y2 = 1. 
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The eigenvectors are [}] and [J]. Divide by ,j2 for unit vectors. Then A = QAQT: 

Eigenvectors in Q 
Eigenvalues 9 and 1 [5 4] 1 [1 1] [9 0] 1 [1 1] 

4 5 =,j2 1 -1 0 1 ,J2 1 -1 . 

Now multiply by [x Y] on the left and [~ ] on the right to get back to x T Ax: 

X T Ax = sum of squares 5x2 + 8xy + 5y2 = 9 ( x ;; ) 2 + I ( x ;! ) 2 (3) 

The coefficients are not the pivots 5 and 9/5 from D, they are the eigenvalues 9 and 1 
from A. Inside these squares are the eigenvectors (1, 1) / ,j2 and (1, -1) / ,J2. 

The axes of the tilted ellipse point along the eigenvectors. This explains why 
A = QAQT is called the "principal axis theorem"-it displays the axes. Not only the 
axis directions (from the eigenvectors) but also the axis lengths (from the eigenvalues). 
To see it all, use capital letters for the new coordinates that line up the ellipse: 

Lined up x+y=X 
,j2 

and 
x-y 
--=- = y 
,j2 

and 

The largest value of X 2 is 1/9. The endpoint of the shorter axis has X = 1/3 and Y = o. 
Notice: The bigger eigenvalue A 1 gives the shorter axis, of half-length 1 / ~ = 1/3. 
The smaller eigenvalue A2 = 1 gives the greater length 1/.J):2 = 1. 

In the xy system, the axes are along the eigenvectors of A. In the XY system, the axes 
are along the eigenvectors of A-the coordinate axes. All comes from A = QAQT. 

, " ,-,'\' . .-', 

Suppose AQAQTis.positivedefinite,S0Xt>O. The:~ta,phofl;'r A.t .•. 1 is@eHiPse; 

[x y] QAQT [;] = [X Y] A [;] = A1X2 + A2y2 = 1. 

Thyaxespointalong;ei&el1.vectors,Theha1f .. len~ths. ate If.fft.an(lll~. 

A = / gives the circle x 2 + y2 = 1. If one eigenvalue is negative (exchange 4's and 5's 
in A), we don't have an ellipse. The sum of squares becomes a difference of squares: 
9X 2 - y2 = 1. This indefinite matrix gives a hyperbola. For a negative definite matrix 
like A = -/, with both A'S negative, the graph of -x2 - y2 = 1 has no points at all. 

• REVIEW OF THE KEY IDEAS • 

1. Positive definite matrices have positive eigenvalues and positive pivots. 

2. A quick test is given by the upper left determinants: a > 0 and ac - b2 > o. 
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3. The graph of x T Ax is then a "bowl" going up from x = 0: 

x T Ax = ax2 + 2bxy + cy2 is positive except at (x, y) = (0,0). 

4. A = RT R is automatically positive definite if R has independent columns. 

5. The ellipse x TAx = I has its axes along the eigenvectors of A. Lengths 1/ VI. 

• WORKED EXAMPLES • 

6.5 A The great factorizations of a symmetric matrix are A = L D L T from pivots and 
multipliers, and A = QAQT from eigenvalues and eigenvectors. Show that x T Ax > ° for 
all nonzero x exactly when the pivots and eigenvalues are positive. Try these n by n tests 
on pascal(6) and ones(6) and hilb(6) and other matrices in MATLAB's gallery. 

Solution To prove x T Ax > 0, put parentheses into x T LDLT x and x T QAQT x: 

xTAx = (LTx)TD(LTx) and xTAx = (QTX)TA(QTX). 

If x is nonzero, then y = LT x and z = QT X are nonzero (those matrices are invertible). 
So x T Ax = Y T D Y = Z T Az becomes a sum of squares and A is shown as positive definite: 

Pivots xTAx yTDy - dlYr+···+dny~ > ° 
Eigenvalues x T Ax zT Az - AIZr + ... + AnZ~ > ° 

MATLAB has a gallery of unusual matrices (type help gallery) and here are four: 

pascal(6) is positive definite because all its pivots are 1 (Worked Example 2.6 A). 

ones(6) is positive semidefinite because its eigenvalues are 0, 0, 0, 0, 0, 6. 

H=hilb(6) is positive definite even though eig(H) shows two eigenvalues very near zero. 

Hilbert matrix x T H x = fol 
(Xl + X2S + ... + XM 5 )2 ds > 0, Hij = l/(i + j + 1). 

rand(6)+rand(6)' can b~ positive definite or not. Experiments gave only 2 in 20000. 

n = 20000; p = 0; for k = 1 :n, A = rand(6); p = p + all(eig(A + At) > 0); end, p / n 

6.5 B When is the symmetric block matrix M = [:T ~] positive definite? 

Solution Multiply the first row of M by BT A-I and subtract from the second row, to 
get a block of zeros. The Schur complement S = C - BT A-I B appears in the comer: 

[ -B; A-I ~] [:T ~] = [~ C _ B~ A-I B ] = [~ ~] (4) 

Those two blocks A and S must be positive definite. Their pivots are the pivots of M. 
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6.5 C Second application: Test for a minimum. Does F(x, y) have a minimum if 
aF lax = 0 and aF lay = 0 at the point (x, y) = (O,O)? 

Solution For I(x), the test for a minimum comes from calculus: dlldx = 0 and 
d 2 II dx 2 > O. Moving to two variables x and y produces a symmetric matrix H. It con
tains the four second derivatives of F(x, y). Positive I" changes to positive definite H: 

Second derivative matrix 

F(x, y) has a minimum if H is positive definite. Reason: H reveals the important terms 
ax2 + 2bxy + ey2 near (x, y) = (0,0). The second derivatives of Fare 2a, 2b, 2b, 2e! 

6.5 D Find the eigenvalues of the -1,2, -I tridiagonal n by n matrix K (my favorite). 

Solution The best way is to guess A and x. Then check K x = AX. Guessing could not 
work for most matrices, but special cases are a big part of mathematics (pure and applied). 

The key is hidden in a differential equation. The second difference matrix K is like a 
second derivative, and those eigenvalues are much easier to see: 

Irig~nvalue~~l,A2';' . 

Eig~nfunctions Y1 , Y2, •.... 

d 2 y - = AY(X) with 
dx2 

yeO) = 0 
y(1) = 0 

(5) 

Try Y = sincx. Its second derivative is y" = -c2 sincx. So the eigenvalue will be 
A = -c2

, provided y(x) satisfies the end point conditions yeO) = 0 = y(l). 
Certainly sin 0 = 0 (this is where cosines are eliminated by cos 0 = 1). At x = 1, 

we need y (1) = sin c = O. The number c must be br, a multiple of Jl' , and A is -c2 : 

Eigenvalues A = _k2 Jl'2 

Eigenfunctions y = sin k Jl' x 
(6) 

Now we go back to the matrix K and guess its eigenvectors. They come from sin kJl' x 
at n points x = h, 2h, ... ,nh, equally spaced between 0 and 1. The spacing 6.x is h = 
I/(n + I), so the (n + l)st point comes out at (n + l)h = 1. Multiply that sine vector S 

by K: 

Eigenvector of K = sine vector s 
Ks = AS = (2 - 2coskJl'h) s 

s = (sin kJl'h • ... , sin nkJl'h). 
(7) 

I will leave that multiplication K S = AS as a challenge problem. Notice what is important: 

1. All eigenvalues 2 - 2 cos kJl' h are positive and K is positive definite. 

2. The sine matrix S has orthogonal columns = eigenvectors S 1 , ... , S n of K. 
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Discrete Sine Transform 
The j, k entry is sin j kTC h [

sin TCh 

S - . . .. 

sin nTC h 

sin kTCh 

... ] 
sinnkTCh 

Those eigenvectors are orthogonal just like the eigenfunctions: f~ sin jTCX sinkTCx dx = 0. 

Problem Set 6.5 

Problems 1-13 are about tests for positive definiteness. 

1 Suppose the 2 by 2 tests a > ° and ac - b2 > ° are passed. Then c > b2 / a is also 
positive. 

(i) Al and A2 have the same sign because their product }"1A2 equals __ 

(i) That sign is positive because Al + A2 equals __ 

Conclusion: The tests a > 0, ac - b2 > ° guarantee positive eigenvalues AI, A2. 

2 Which of AI, A2 , A 3 , A4 has two positive eigenvalues? Use the test, don't compute 
the A'S. Find an x so that x TAl X < 0, so A 1 fails the test. 

_ [-1 -2] 
A2 - -2 -5 10] 100 10] 101 . 

3 For which numbers band c are these matrices positive definite? 

A _ [I b] 
- b 9 A=[~ ~l 

With the pivots in D and multiplier in L, factor each A into LDLT. 

4 What is the quadratic I = ax2 + 2bxy + cy2 for each of these matrices? Complete 
the square to write 1 as a sum of one or two squares d l ( )2 + d2 ( )2. 

A _ [1 2] 
- 2 9 and 

5 Write I(x, y) = x 2 + 4xy + 3y2 as a difference of squares and find a point (x, y) 
where I is negative. The minimum is not at (0,0) even though I has positive 
coefficients. 

6 The function I(x, y) = 2xy certainly has a saddle point and not a minimum at 
(0,0). What symmetric matrix A produces this I? What are its eigenvalues? 
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7 Test to see if RT R is positive definite in each case: 

R = [~ ;] and R = [i n and R = [; ~ n 
8 The function I(x, y) = 3(x + 2y)2 + 4y2 is positive except at (0,0). What is the 

matrix in I = [x y]A[x y]T? Check that the pivots of A are 3 and 4. 

9 Find the 3 by 3 matrix A and its pivots, rank, eigenvalues, and determinant: 

10 Which 3 by 3 symmetric matrices A and B produce these quadratics? 

x T Ax = 2(xi + xi + x~ - XtX2 - X2X3). Why is A positive definite? 

x T Bx = 2(xi + xi + x~ - XtX2 - XIX3 - X2X3). Why is B semidefinite? 

11 Compute the three upper left determinants of A to establish positive definiteness. 
Verify that their ratios give the second and third pivots. 

Pivots = ratios of determinants A = [~ 2 0] 5 3 . 
3 8 

12 For what numbers c and d are A and B positive definite? Test the 3 determinants: 

[

c 1 1] 
A = 1 c 1 

1 I c 
and [

I 2 3] 
B= 2 d 4 . 

345 

13 Find a matrix with a > d and c > ° and a + c > 2b that has a negative eigenvalue. 

Problems 14-20 are about applications of the tests. 

14 If A is positive definite then A-I is positive definite. Best proof: The eigenvalues 
of A-I are positive because . Second proof (only for 2 by 2): 

t I [c -b] The entries of A - = ac _ b2 -b a pass the determinant tests 

15 If A and B are positive definite, their sum A + B is positive definite. Pivots and 
eigenvalues are not convenient for A + B. Better to prove x T (A + B)x > 0. Or if 
A = RT Rand B = ST S , show that A + B = [R S]T [~ ] with independent columns. 

Jason
高亮

Jason
高亮
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16 A positive definite matrix cannot have a zero (or even worse, a negative number) on 
its diagonal. Show that this matrix fails to have x T Ax > 0: 

[4 1 1] [Xl] [Xl X2 X3] 1 0 2 X2 is not positive when (Xl, X2, X3) = ( , 
1 2 5 X3 

). 

17 A diagonal entry a jj of a symmetric matrix cannot be smaller than all the A'S. If it 
were, then A - a jj I would have eigenvalues and would be positive definite. 
But A - a jj I has a on the main diagonal. 

18 If Ax = AX then x T Ax = __ . If x T Ax > 0, prove that A > O. 

19 Reverse Problem 18 to show that if all A > 0 then x TAx > O. We must do this 
for every nonzero x, not just the eigenvectors. So write x as a combination of the 
eigenvectors and explain why all "cross terms" are x T x j = O. Then x T Ax is 

(CIXI + ... +cnxn)T(CIAIXl +. ··+cnAnXn) = cfAlxIxl + ... +C;AnX~Xn > O. 

20 Give a quick reason why each of these statements is true: 

(a) Every positive definite matrix is invertible. 

(b) The only positive definite projection matrix is P = I. 

(c) A diagonal matrix with positive diagonal entries is positive definite. 

(d) A symmetric matrix with a positive determinant might not be positive definite! 

Problems 21-24 use the eigenvalues; Problems 25-27 are based on pivots. 

21 For which sand t do A and B have all A > 0 (therefore positive definite)? 

[ 

S -4 -4] 
A = -4 s-4 

-4 -4 s 
and 

[

t 3 0] 
B= 3 t 4 . 

o 4 t 

22 From A = QAQT compute the positive definite symmetric square root QA 1/2QT 
of each matrix. Check that this square root gives R2 = A: 

and 

23 You may have seen the equation for an ellipse as X2 / a2 + y2 / b2 = 1. What are a 
and b when the equation is written AIX2 + A2y2 = I? The ellipse 9X2 + 4y2 = 1 
has axes with half-lengths a = and b = __ 

24 Draw the tilted ellipse X2 + xy + y2 = 1 and find the half-lengths of its axes from 
the eigenvalues of the corresponding matrix A. 

Jason
高亮
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25 With positive pivots in D, the factorization A L D L T becomes L,JD,JD LT. 
(Square roots of the pivots give D = ,JD J15.) Then C = J15 L T yields the 
Cholesky factorization A = eTc which is "symmetrized L U": 

From C = [~ ;] find A. From A = [: 2~] find C = chol(A). 

26 In the Cholesky factorization A = eTc, with c T = L,JD, the square roots of the 
pivots are on the diagonal of C. Find C (upper triangular) for 

[
9 0 0] 

A = 0 I 2 
028 

and 
[

1 I 
A = 1 2 

1 2 

27 The symmetric factorization A = L D L T means that x T Ax = X T L D L T x: 

28 

The left side is ax2 + 2bxy + cy2. The right side is a(x + ~y)2 + y2. 
The second pivot completes the square! Test with a = 2, b = 4, C = 10. 

W· hi' I' A [cos e It out mu tIP ymg = . II 
smo 

- sin e ] [2 0] [ cos e 
cos e 0 5 - sin e 

(b) the eigenvalues of A 

sin e) find 
cose ' 

(a) the determinant of A 
(c) the eigenvectors of A (d) a reason why A is symmetric positive definite. 

29 For F1(x,y) = -lX4 + x 2y + y2 and F2(x,y) = x3 + xy - x find the second 
derivative matrices HI and H 2: 

[ 
a2Fjax2 a2Fj aXay ] 

Test for minimum. H = a2 2 2 is positive definite 
Fjayax a Fjay 

HI is positive definite so FI is concave up (= convex). Find the minimum point 
of Fl and the saddle point of F2 (look only where first derivatives are zero). 

30 The graph of z = x 2 + y2 is a bowl opening upward. The graph of z = x 2 - y2 is 
a saddle. The graph of z = _x2 - y2 is a bowl opening downward. What is a test 
on a, b, C for z = ax2 + 2bxy + cy2 to have a saddle point at (O,O)? 

31 Which values of c give a bowl and which c give a saddle point for the graph of 
z = 4x2 + 12xy + cy2? Describe this graph at the borderline value of c. 

Jason
高亮

Jason
高亮

Jason
高亮



354 Chapter 6. Eigenvalues and Eigenvectors 

Challenge Problems 

32 A group of nonsingular matrices includes A B and A -1 if it includes A and B. 
"Products and inverses stay in the group." Which of these are groups (as in 2.7.37)? 

Invent a "subgroup" of two of these groups (not I by itself = the smallest 
group). 

(a) Positive definite symmetric matrices A. 

(b) Orthogonal matrices Q. 
(c) All exponentials etA of a fixed matrix A. 

(d) Matrices P with positive eigenvalues. 

(e) Matrices D with determinant 1. 

33 When A and B are symmetric positive definite, A B might not even be symmetric. 
But its eigenvalues are still positive. Start from ABx = AX and take dot products 
with Bx. Then prove A > O. 

34 Write down the 5 by 5 sine matrix S from Worked Example 6.5 D, containing the 
eigenvectors of K when n = 5 and h = 1/6. Multiply K times S to see the five 
positive eigenvalues. 

Their sum should equal the trace 10. Their product should be det K = 6. 

35 Suppose C is positive definite (so y T C Y > 0 whenever y =f. 0) and A has indepen
dent columns (so Ax =f. 0 whenever x =f. 0). Apply the energy test to X T ATCAx to 
show that ATCA is positive definite: the crucial matrix in engineering. 
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6.6 Similar Matrices 

The key step in this chapter is to diagonalize a matrix by using its eigenvectors. When S 
is the eigenvector matrix, the diagonal matrix S-1 AS is A-the eigenvalue matrix. But 
diagonalization is not possible for every A. Some matrices have too few eigenvectors-we 
had to leave them alone. In this new section, the eigenvector matrix S remains the best 
choice when we can find it, but now we allow any invertible matrix M. 

Starting from A we go to M-1 AM. This matrix may be diagonal-probably not. 
It still shares important properties of A. No matter which M we choose, the eigenvalues 
stay the same. The matrices A and M- 1 AM are called "similar". A typical matrix A is 
similar to a whole family of other matrices because there are so many choices of M. 

DEFINITION LetM be aI1y mvertible.matrlx. Then B = M- 1 AM is similar to A. 

If B = M -1 A M then immediately A = M B M -1. That means: If B is similar to A then 
A is similar to B. The matrix in this reverse direction is M- 1-just as good as M. 

A diagonalizable matrix is similar to A. In that special case M is S. We have A = 
SAS-1 and A = S-1 AS. They certainly have the same eigenvalues! This section is 
opening up to other similar matrices B = M-1 AM, by allowing all invertible M. 

The combination M-1 AM appears when we change variables in a differential equa
tion. Start with an equation for u and set u = M v: 

du 
d t = Au becomes 

dv .. 
M dt = AM'll WhICh IS 

dv -1 
d't=M AMv. 

The original coefficient matrix was A, the new one at the right is M-1 AM. Changing u 
to v leads to a similar matrix. When M = S the new system is diagonal-the maximum in 
simplicity. Other choices of M could make the new system triangular and easier to solve. 
Since we can always go back to u, similar matrices must give the same growth or decay. 
More precisely, the eigenvalues of A and B are the same. 

\ 

(No .change in A'SJSiriIi1at.matrice~ •. 4 and M-IAM ... have the .. sllmeeigenvalues. 
Ifx is an eigenvector of A,thenM-1 x is an eigenvector of B .. ... M";'l AM . 

The proof is quick, since B = M- I AM gives A = MBM- 1• Suppose Ax = AX: 

The eigenvalue of B is the same A. The eigenvector has changed to M- I x. 
Two matrices can have the same repeated A, and fail to be similar-as we will see. 
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Example 1 These matrices M-I AM all have the same eigenvalues 1 and 0. 

The projection A = [:; :;J is similar to A = S-1 AS = [~ ~J 

NowchooseM = [~ ~l ThesimilarmatrixM-IAM is [~ ~l 

Al h M [ 0 -IJ Th "1 . M lAM' [ .5 -.5J so c oose = 1 0' e SImI ar matnx - IS -.5 .5' 

All 2 by 2 matrices with those eigenvalues 1 and 0 are similar to each other. The 
eigenvectors change with M, the eigenvalues don't change. 

The eigenvalues in that example are not repeated. This makes life easy. Repeated 
eigenvalues are harder. The next example has eigenvalues ° and 0. The zero matrix shares 
those eigenvalues, but it is similar only to itself: M-10M = 0. 

Example 2 A family of similar matrices with A = 0, ° (repeated eigenvalue) 

A = [~ ~ J is similar to [ ~ = ~ J and all B = [-:~ -:; J except [~ ~ J . 
These matrices B all have zero determinant (like A). They all have rank one (like A). 
One eigenvalue is zero and the trace is ed - de = 0, so the other must be zero. I chose any 
M = [~~] with ad -be = 1, and B = M-IAM. 

These matrices B can't be diagonalized. In fact A is as close to diagonal as possible. 
It is the "Jordan form" for the family of matrices B. This is the outstanding member 
(my class says "Godfather") of the family. The Jordan form J = A is as near as we can 
come to diagonalizing these matrices, when there is only one eigenvector. In going from A 
to B = M-1 AM, some things change and some don't. Here is a table to show this. 

Not changed by M 
Eigenvalues 
Trace and determinant , 
Rank 
Number of independent 

eigenvectors 
Jordan form 

Changed byM 
Eigenvectors 
Nullspace 
Column space 
Row space 
Left nullspace 
Singular values 

The eigenvalues don't change for similar matrices; the eigenvectors do. The trace is 
the sum of the A'S (unchanged). The determinant is the product of the same A'S.l The 
nullspace consists of the eigenvectors for A = ° (if any), so it can change. Its dimension 
n - r does not change! The number of eigenvectors stays the same for each A, while the 
vectors themselves are multiplied by M-l. The singular values depend on AT A, which 
definitely changes. They come in the next section. 

1 The detenninant is unchanged becausedetB = (detM-I)(detA)(detM) = detA. 
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Examples of the Jordan Form 

The Jordan form is the serious new idea here. We lead up to it with one more example of 
similar matrices: triple eigenvalue, one eigenvector. 

Example 3 This Jordan matrix J has A = 5,5,5 on its diagonal. Its only eigenvectors 
are multiples of x = (1,0,0). Algebraic mUltiplicity is 3, geometric multiplicity is 1: 

If ,'~!~l~j;~l;~~~},l then J - Sf = [~ ~ ~] has rank 2. 

ii"}~'t:(,:r!~~§;"ii~{~{;Th~'UEi 0 0 0 

Every similar matrix B = M-1 J M has the same triple eigenvalue 5,5,5. Also B - 51 
must have the same rank 2. Its nullspace has dimension 1. So every B that is similar to this 
"Jordan block" J has only one independent eigenvector M-1 x. 

The transpose matrix JT has the same eigenvalues 5,5,5, and JT - 51 has the same 
rank 2. Jordan's theorem says that JT is similar to J. The matrix M that produces the 
similarity happens to be the reverse identity: 

JT = M-
1 
JM is [! ~ ~] = [1 1 1] [~ i !][ 1 1 1 

All blank entries are zero. An eigenvector of JT is M-1 (1, 0, 0) = (0,0,1). There is one 
line of eigenvectors (Xl, 0, 0) for J and another line (0,0, X3) for JT. 

The key fact is that this matrix J is similar to every matrix A with eigenvalues 5,5,5 
and one line of eigenvectors. There is an M with M-I AM = J. 

Example 4 Since J is as close to diagonal as we can get, the equation d u / d t = J u 
cannot be simplified by changing variables. We must solve it as it stands: 

d [5 1 0] [X] d
U 

= Ju = 0 5 1 y 
t 0,. 0 5 z 

is 
dx/dt = 5x + y 
dy/dt = 5y + z 
dz/dt = 5z. 

The system is triangular. We think naturally of back substitution. Solve the last equation 
and work upwards. Main point: All solutions contain eSt since A = 5: 

Last equation 
dz 
-=5z 
dt 

yields z = z(O)eSt 

Notice teSt 
dy 
dt = 5y + z yields y = (y(O) + tz(O))eSt 

Notice t 2eSt dx 
- =5x+y 
dt 

yields X = (x(O) + ty(O) + !t 2z(0) )eSt . 

The two missing eigenvectors are responsible for the teSt and t 2eSt terms in y and x. 
The factors t and t 2 enter because A = 5 is a triple eigenvalue with one eigenvector. 
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Note Chapter 7 will explain another approach to. similar matrices. Instead of changing 
variables by u = M v, we "change the basis". In this approach, similar matrices will 
represent the same transformation Qf n-dimensiQnal space. When we chQQse a basis fQr 
Rn , we get a matrix. The standard basis vectQrs (M = 1) lead to I-I AI which is A. 
Other bases lead to. similar matrices B = M -1 AM. 

The Jordan Form 

FQr every A, we want to. chQQse M so. that M- 1 AM is as nearly diagonal as possible. 
When A has a full set of n eigenvectQrs, they go. into. the cQlumns Qf M. Then M = S. 
The matrix S-l AS is diagQnal, period. This matrix A is the JQrdan fQrm of A-when A 
can be diagonalized. In the general case, eigenvectors are missing and A can't be reached. 

Suppose A has s independent eigenvectQrs. Then it is similar to. a matrix with s blQcks. 
Each blQck is like J in Example 3. The eigenvalue is on the diagonal with 1 's just above it. 
This block accounts fQr Qne eigenvector Qf A. When there are n eigenvectors and n blocks, 
they are all 1 by 1. In that case J is A. 

(J,p~d~l1<fQtm)i.lfA·ha$i~ill<iep¢n:d¢nteigenv~¢tQts, .it·i$.sifuihtr.·to·. a.lhattix l·· •. thathas s 
.. Jordanbloc:k~on its. diagonal: SQm~m:atrixM'p1;1t$AintoJotdan fOl1J}: 

.Iordan<form (1) 

(2) 

. ...•... ... ' .,. ..' .......... .., 

A~s<siittilatt{)B·if(k~Y$~(J,t~th~sa1l1,elotdattfiitm.·J---not()therwise. 

The JQrdan form J has an Qff-diagonal 1 for each missing eigenvector (and the 1 's are next 
to. the eigenvalues). This is the big theorem abQut matrix similarity. In every family Qf 
similar matrices, we are picking Qne Qutstanding member called J. It is nearly diagQnal (Qr 
ifpQssible completely diagQnal). FQrthat J, we can solve duJdt = Ju as in Example 4. 
We can take powers J k as in PrQblems 9-10. Every other matrix in the family has the form 
A = MJM- 1• The connectiQn through M sQlves duJdt = Au. 

The PQint you must see is that MJM-1 MJM-1 = MJ2M-1• That cancellatiQn of 
M- 1 M in the middle has been used thrQugh this chapter (when M was S). We found A 100 

frQm SA 100 S-l-by diagQnalizing the matrix. Now we can't quite diagonalize A. So. we 
use M J 100 M-1 instead. 
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Jordan's Theorem is proved in my textbook Linear Algebra and Its Applications. 
Please refer to that book (or more advanced books) for the proof. The reasoning is rather 
intricate and in actual computations the Jordan form is not at all popular-its calculation 
is not stable. A slight change in A will separate the repeated eigenvalues and remove the 
off-diagonal 1 's-switching to a diagonal A. 

Proved or not, you have caught the central idea of similarity-to make A as simple as 
possible while preserving its essential properties. 

• REVIEW OF THE KEY IDEAS • 

1. B is similar to A if B = M- I AM, for some invertible matrix M. 

2. Similar matrices have the same eigenvalues. Eigenvectors are multiplied by M-I . 

3. If A has n independent eigenvectors then A is similar to A (take M = S). 

4. Every matrix is similar to a Jordan matrix J (which has A as its diagonal part). J 
has a block for each eigenvector, and 1 's for missing eigenvectors. 

• WORKED EXAMPLES • 

6.6A The 4 by 4 triangular Pascal matrix A and its inverse (alternating diagonals) are 

I 0 0 0 1 0 0 0 

A= 1 1 0 0 
and A- I = -1 1 0 0 

1 2 1 0 1 -2 1 0 
1 3 3 1 -1 3 -3 1 

Check that A and A-I have the same eigenvalues. Find a diagonal matrix D with alternat
ing signs that gives A-I = D-I AD. This A is similar to A-I, which is unusual. 

These similar matrices must have the same Jordan form J. This J has only one block 
because the Pascal matrix has only one line of eigenvectors. 

Solution The triangular matrices A and A -1 both have A = 1, 1, 1, 1 on their main 
diagonals. Choose D with alternating 1 and -Ion its diagonal. D equals D- 1: 

-1 

D-1AD = 1 
-1 

1 

1 000 
1 1 0 0 
121 0 
133 1 

-1 
1 

-1 
1 

Check: Changing signs in rows 1 and 3 of A, and columns 1 and 3, produces the four 
negative entries in A -1. We are multiplying row i by (-I)i and column j by (-I)j , which 
gives the alternating diagonals in A-I. Then AD has columns with alternating signs. 
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6.6 B The best way to compute eigenvalues of a large matrix is not from solving 
det(A - AI) = O. That high degree polynomial is a numerical disaster. 

Instead we compute similar matrices A I, A2 , ••• that approach a triangular matrix. Then 
the eigenvalues of A (unchanged) are almost sitting on the main diagonal. 

One way is to factor A = QR by "Gram-Schmidt". Reverse the order to Al = RQ. 
This matrix is similar to A because RQ = Q-I (QR) Q. An example with c = cos f) and 
s = sin f) shows how a small off-diagonal s can be cubed in AI: 

A = [~ ~] factors into [~ _:] [~ ~~] = Q R. 

Al = RQ = [ C ~;S2 _::2] has S3 below the diagonal 

Another step can factor Al = QIRI and reverse to A2 = R t Qt. This QR method is in 
Section 9.3 with a further improvement for AI. Add cs2 to its diagonal (to get zero in the 
comer) and then subtract back from A2 : 

Shift and factor Al + cs2 I = QIRI 

Shifted QR is an amazing success-just about the best way to compute eigenvalues. 

Problem Set 6.6 

1 If C = F-1 AF and also C = G-1 BG, what matrix M gives B = M-t AM? 
Conclusion: If C is similar to A and also to B then __ 

2 If A = diag(1, 3) and B = diag(3, 1) show that A and B are similar (find an M). 

3 Show that A and B are similar by finding M so that B = M- 1 AM: 

A = [! ~] 
A = [! !] 
A = [~ ~] 

and 

and 

and 

B = [~ ~] 
B = [ 1 -1] 

-1 1 

B = [~ ~l 
4 If a 2 by 2 matrix A has eigenvalues 0 and 1, why is it similar to A = [A 8]? 

Deduce from Problem 1 that all 2 by 2 matrices with those eigenvalues are similar. 

5 Which of these six matrices are similar? Check their eigenvalues. 

[~~] [~~] [~~] [~~] [! ~] [~ !]. 
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6 There are sixteen 2 by 2 matrices whose entries are O's and 1 'so Similar matrices go 
into the same family. How many families? How many matrices (total 16) in each 
family? 

7 (a) If x is in the nullspace of A show that M- 1 x is in the nullspace of M- 1 AM. 

(b) The nullspaces of A and M- l AM have the same (vectors)(basis)(dimension). 

8 Suppose Ax = Ax and Bx = Ax with the same A's and x's. With n independent 
eigenvectors we have A = B: Why? Find A '# B when both have eigenvalues 0,0 
but only one line of eigenvectors (Xl, 0). 

9 By direct multiplication find A 2 and A 3 and A S when 

A=[~ ~J. 
Guess the form of A k. Set k = 0 to find A 0 and k = -1 to find A-I. 

Questions 10-14 are about the Jordan form. 

10 By direct multiplication, find J2 and J3 when 

J=[~ lJ. 
Guess the form of J k . Set k = 0 to find JO. Set k = -1 to find J- l . 

11 Solve du/dt = Ju for J in Problem 10, starting from u(O) = (5,2). Remember 
teAt . 

12 These Jordan matrices have eigenvalues 0,0,0, O. They have two eigenvectors (one 
from each block). But the block sizes don't match and they are not similar: 

0 I 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 

J= and K= 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 

For any matrix M, compare J M with M K. If they are equal show that M is not 
invertible. Then M-l JM = K is impossible: J is not similar to K. 

13 Based on Problem 12, what are the five Jordan forms when A = 0,0,0, O? 

14 Prove that AT is always similar to A (we know the A's are the same): 

1. For one Jordan block Ji: Find Mi so that Mi-
1 Ji Mi = Jl (see Example 3). 

2. For any J with blocks h: Build Mo from blocks so that MOl JMo = JT. 

3. For any A = M J M- 1: Show that AT is similar to JT and so to J and to A. 
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15 Prove that det(A - AI) = det(M- 1 AM - AI). (You could write I = M- 1 M 
and factor out det M- 1 and det M.) Since these characteristic polynomials of A and 
M- 1 AM are the same, the eigenvalues are the same (with the same multiplicities). 

16 Which pairs are similar? Choose a, b, c, d to prove that the other pairs aren't: 

17 True or false, with a good reason: 

(a) A symmetric matrix can't be similar to a nonsymmetric matrix. 

(b) An invertible matrix can't be similar to a singular matrix. 

(c) A can't be similar to -A unless A = 0. 

(d) A can't be similar to A + I. 

18 If B is invertible, prove that AB is similar to BA. They have the same eigenvalues. 

19 If A is 6 by 4 and B is 4 by 6, A Band BA have different sizes. But with blocks 

M-1FM = [~ -1J [A! 6J [~ 1J = [~ B~J = G. 

(a) What sizes are the four blocks (the same four sizes in each matrix)? 

(b) This equation is M- 1 FM = G, so F and G have the same 10 eigenvalues. 
F has the 6 eigenvalues of AB plus 4 zeros; G has the 4 eigenvalues of BA 
plus 6 zeros. AB has the same eigenvalues as BA plus zeros. 

20 Why are these statements all true? 

(a) If A is similar to B then A 2 is similar to B2. 

(b) A2 and B2 can be similar when A and B are not similar (try A = 0,0). 

(c) [i ~] is similar to [i !]. 
(d) [i ~] is not similar to [i ~ ]. 
(e) If we exchange rows 1 and 2 of A, and then exchange columns 1 and 2, the 

eigenvalues ,stay the same. In this case M = __ , 
21 If J is the 5 by 5 Jordan block with A = 0, find J2 and count its eigenvectors and 

find its Jordan form (there will be two blocks). 

Challenge Problems 

22 If an n by n matrix A has all eigenvalues A = 0, prove that An = zero matrix. 
(Maybe prove first that J n = zero matrix, by direct multiplication. Or use the Cayley
Hamilton Theorem?) 

23 For the shifted QR method in the Worked Example 6.6 B, show that A2 is similar to 
A 1. No change in eigenvalues, and the A's quickly approach a diagonal matrix. 

24 If A is similar to A-I, must all the eigenvalues equal 1 or -1 ? 
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6.7 Singular Value Decomposition (SVD) 

The Singular Value Decomposition is a highlight of linear algebra. A is any m by n ma
trix, square or rectangular. Its rank is r. We will diagonalize this A, but not by S-I AS. 
The eigenvectors in S have three big problems: They are usually not orthogonal, there are 
not always enough eigenvectors, and Ax = AX requires A to be square. The singular 
vectors of A solve all those problems in a perfect way. 

The price we pay is to have two sets of singular vectors, u's and v's. The u's are eigen
vectors of AAT and the v's are eigenvectors of AT A. Since those matrices are 
both symmetric, their eigenvectors can be chosen orthonormal. In equation (13) below, 
the simple fact that A times AT A is the same as AAT times A will lead to a remarkable 
property of these u's and v's: 

" JfisdiagonaUzed" (1) 

The singular vectors VI, ... , Vr are in the row space of A. The outputs u 1 , ... , U r are in 
the column space of A. The singular values 0"1, .•. ,O"r are all positive numbers. When the 
V'S and u's go into the columns of V and U, orthogonality gives VT V = I and UT U = I. 
The 0" 's go into a diagonal matrix :E. 

Just as AXi = Aixi led to the diagonalization AS = SA, the equations AVi = O"iUi 
tell us column by column that A V = U I: : 

(m b~~~~7s by r) A [ VI •. v r ] [ul " Ur ] [ 171 ~r ] . (2) 
(mbyr)(rbyr) v 

This is the heart of the SVD, but there is more. Those v's and u's account for the row 
space and column space of A. We need n - r more v's and m - r more u's, from the 
nullspace N (A) and the left nullspace N (AT). They can be orthonormal bases for those 
two nullspaces (and then automatically orthogonal to the first r v's and u's). Include all 
the v's and u's in V and U, so these matrices become square. We still have A V = U I: . 

The new :E is m by n. It is just the old r by r matrix (call that :Er ) with m - r new zero 
rows and n - r new zero columns. The real change is in the shapes of U and V and :E. 
Still VTV = I and UTU = I, with sizes nand m. 

V is now a square orthogonal matrix, with inverse V-I = VT . So A V = U:E can 
become A = U I: VT. This is the Singular Value Decomposition: 

SVD 
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I would write the earlier "reduced SVD" from equation (2) as A = Ur b r V7. 
That is equally true, without the extra zeros in b. This reduced SVD gives the same 
splitting of A into a sum of r matrices, each of rank one. 

We will see that O't = Ai is an eigenvalue of AT A and also AAT. When we put the 
singular values in descending order, O'l > 0'2 > ... O'r > 0, the splitting in equation (4) 
gives the r rank -one pieces of A in order of importance. 

Example 1 When is UbVT (singular values) the same as SAS-1 (eigenvalues)? 

Solution We need orthonormal eigenvectors in S = U. We need nonnegative eigenvalues 
in A = b. So A must be a positive semidefinite (or definite) symmetric matrix QA QT. 

Example 2 If A = xy T with unit vectors x and y, what is the SVD of A? 

Solution The reduced SVD in (2) is exactly xy T, with rank r = 1. It has Ul = x and 
VI = Y and 0'1 = 1. For the full SVD, complete Ul = x to an orthonormal basis 
of u's, and complete VI = Y to an orthonormal basis of v's. No new O"s. 

I will describe an application before proving that AVi = O'i Ui. This key equation gave 
the diagonalizations (2) and (3) and (4) of the SVD: A = U:EVT • 

Image Compression 

Unusually, I am going to stop the theory and describe applications. This is the century of 
data, and often that data is stored in a matrix. A digital image is really a matrix of pixel 
values. Each little picture element or "pixel" has a gray scale number between black and 
white (it has three numbers for a color picture). The picture might have 512 = 29 pixels 
in each row and 256 = 28 pixels down each column. We have a 256 by 512 pixel matrix 
with 217 entries! To store one picture, the computer has no problem. But a CT or MR 
scan produces an image at every cross section-a ton of data. If the pictures are frames in 
a movie, 30 frames a second means 108,000 images per hour. Compression is especially 
needed for high definition digital TV, or the equipment could not keep up in real time. 

What is compression? We want to replace those 217 matrix entries by a smaller number, 
without losing picture quality. A simple way would be to use larger pixels-replace groups 
of four pixels by their average value. This is 4 : 1 compression. But if we carry it further, 
like 16 : 1, our image becomes "blocky". We want to replace the mn entries by a smaller 
number, in a way that the human visual system won't notice. 

Compression is a billion dollar problem and everyone has ideas. Later in this book I 
will describe Fourier transforms (used in jpeg) and wavelets (now in JPEG2000). Here 
we try an SVD approach: Replace the 256 by 512 pixel matrix by a matrix of rank one: 
a column times a row. If this is successful, the storage requirement becomes 256 + 512 
(add instead of multiply). The compression ratio (256)(512)/(256 + 512) is better than 
170 to 1. This is more than we hope for. We may actually use five matrices of rank one 
(so a matrix approximation of rank 5). The compression is still 34 : 1 and the crucial 
question is the picture quality. 
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Where does the SVD come in? The best rank one approximation to A is the matrix 
al u I v I. It uses the largest singular value al. The best rank 5 approximation includes also 
a2u2v1' + ... + a5u5v~, The SVD puts the pieces of A in descending order. 

A library compresses a different matrix. The rows correspond to key words. Columns 
correspond to titles in the library. The entry in this word-title matrix is aU = 1 if word 
i is in title j (otherwise aU = 0). We normalize the columns so long titles don't get an 
advantage. We might use a table of contents or an abstract. (Other books might share the 
title "Introduction to Linear Algebra".) Instead of aU = 1, the entries of A can include the 
frequency of the search words. See Section 8.6 for the SVD in statistics. 

Once the indexing matrix is created, the search is a linear algebra problem. This giant 
matrix has to be compressed. The SVD approach gives an optimal low rank approximation, 
better for library matrices than for natural images. There is an ever-present tradeoff in the 
cost to compute the u's and v's. We still need a better way (with sparse matrices). 

The Bases and the SVD 

Start with a 2 by 2 matrix. Let its rank be r = 2, so A is invertible. We want VI and V2 to 
be perpendicular unit vectors. We also want A VI and AV2 to be perpendicular. (This is the 
tricky part. It is what makes the bases special.) Then the unit vectors Ul = AVI/llAvIl1 
and U2 = AV2/11Av211 will be orthonormal. Here is a specific example: 

U nsymmetric matrix A=[_~ ~J. (5) 

No orthogonal matrix Q will make Q-l AQ diagonal. We need U- I AV. The two bases 
will be different-one basis cannot do it. The output is AVI = alul when the input is VI. 
The "singular values" al and a2 are the lengths IIAvIl1 and IIAv211. 

AV·=UE· 
A = U.EVt 

There is a neat way to remove U and see V by itself. Multiply AT times A. 

AT A = (U~VT)T(U~VT) = V~T~VT. (7) 

uT U disappears because it equals I. (We require u I u I = I = u1' U2 and u I U2 = 0.) 
Multiplying those diagonal ~T and ~ gives a~ and a1. That leaves an ordinary 
diagonalization of the crucial symmetric matrix AT A, whose eigenvalues are ar and a1: 

Eigenyalqe$ut, (J"~ 
Eigenv:e~tors VI;,pi . 

0] 
2 ...........•. 

y
T., ~2 

(8) 

This is exactly like A = QAQT. But the symmetric matrix is not A itself. Now the 
symmetric matrix is AT A! And the columns of V are the eigenvectors of AT A. Last is U: 
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CfIJlt1l!!RII2. ~ '® ~ ~ @"~ flit A'1f A~ Vhm ®lNfh f1l = ,,t '®I!@"~ 

For large matrices LAPACK finds a special way to avoid multiplying AT A in svd (A). 

- - - - - -
- ..... 

/ 

/ 

Figure 6.8: U and V are rotations and reflections. ~ stretches circle to ellipse. 

IERmp'Ie 3 Find the singular value decomposition of that matrix A = [_ i i ]. 
Solution Compute AT A and its eigenvectors. Then make them unit vectors: 

AT A-_[53 35] h .. [1/~] as umt eIgenvectors VI = 1 1 ~ [-1/~] and V2 = 1/~ . 

The eigenvalues of AT A are 8 and 2. The v's are perpendicular, because eigenvectors of 
every symmetric matrix are perpendicular-and AT A is automatically symmetric. 

Now the u's are quick to find, because AVI is going to be in the direction of Ul: 

[ 2 2] [1/../2] [2~] . . [1] Av 1 = -1 1 11../2 = 0' The umt vector IS u 1 = ° . 
Clearly AVI is the same as 2../2 Ul. The first singular value is 0-1 = 2~. Then o-f = 8. 

[2 2][-1/../2] [0] . . [0] AV2 = -1 1 11../2 = ~ . The umt vector IS U2 = 1 . 
Now AV2 is ~ U2 and 0-2 = ../2. Thus o-i agrees with the other eigenvalue 2 of AT A. 

[2 2]=[1 0][2~ ][ 1/~ 1/../2] 
-1 1 ° 1 ~ -1/~ l/~ . 

(9) 

This matrix, and every invertible 2 by 2 matrix, transforms the unit circle to an ellipse. 
You can see that in the figure, which was created by Cliff Long and Tom Hem. 
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One final point about that example. We found the u's from the v's. Could we find the 
u's directly? Yes, by multiplying AAT instead of AT A: 

Use VTV = I (10) 

Multiplying ~~T gives af and ai as before. The u's are eigenvectors of AAT: 

Diagonal in this example AAT=[ 22][2 -1]=[80] 
-1 1 2 1 ° 2 . 

The eigenvectors (1,0) and (0, 1) agree with Ul and U2 found earlier. Why take the first 
eigenvector to be (1,0) instead of (-1,0) or (0, I)? Because we have to follow AVI 

(I missed that in my video lecture ... ). Notice that AAT has the same eigenvalues 
(8 and 2) as AT A. The singular values are v'8 and ../2. 

Example 4 Find the SVD of the singular matrix A = [i i]. The rank is r = 1. 

Solution The row space has only one basis vector VI = (1, 1)/../2. The column space 
has only one basis vector Ul = (2,1)/.J5. Then AVI = (4,2)/../2 must equal alUl. 

It does, with al = .JIO. 

nullspace 
nullspace of AT 

Figure 6.9: The SVD chooses orthonormal bases for 4 subspaces so that AVi = aiui. 

The SVD could stop after the row space and column space (it usually doesn't). It is 
customary for U and V to be square. The matrices need a second column. The vector 
V2 is in the nullspace. It is perpendicular to V 1 in the row space. Multiply by A to get 
AV2 = O. We could say that the second singular value is a2 = 0, but singular values are 
like pivots-only the r nonzeros are counted. 

A = U~VT 
Full size 

(11) 
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'.' i' 

'fit~tC ' 'If. cabiri1ilsCifJ1',:, row space of A 

I~st'n,',f ~QIJ;iIilii~QfJl: nullspace of A 

'~r~t. r,CbIUmnsgffl;. column space of A 

i~sf;cdiuIniis:~f:tJ\;?\: nullspace of AT 

The first columns VI, ... ,Vr and UI, ... ,Ur are eigenvectors of AT A and AAT. We 
now explain why AVi falls in the direction of Ui. The last v's and u's (in the nullspaces) 
are easier. As long as those are orthonormal, the SVD will be correct. 

Proof of the SVD: Start from AT AVi = alv;, which gives the v's and a's. Multiplying 
by vT leads to IIAv; 112. To prove that AVi = ajUj, the key step is to mUltiply by A: 

vi AT AVi = o"[ViVi gives IIAvi 112 = O"i2 so that IIAvi II = O"i (12) 

AAT AVi = of AVi gives Ui = Av;jO"i as a unit eigenvector of AAT. (13) 

Equation (12) used the small trick of placing parentheses in (vTAT)(Avj) = IIAvilI2. 
Equation (13) placed the all-important parentheses in (AAT)(Avj). This shows that AVi 
is an eigenvector of AAT. Divide by its length ai to get the unit vector Ui = Avila;. 
These u's are orthogonal because (AVi)T(Avj) = vT(AT AVj) = vT(aJvj) = O. 

I will give my opinion directly. The SVD is the climax of this linear algebra course. 
I think of it as the final step in the Fundamental Theorem. First come the dimensions of 
the four subspaces. Then their orthogonality. Then the orthonormal bases diagonalize A. 
It is all in the formula A = U~VT. You have made it to the top. 

Eigshow (Part 2) 

Section 6.1 described the MATLAB demo called eigshow. The first option is eig, when x 
moves in a circle and Ax follows on an ellipse. The second option is svd, when two vectors 
x and y stay perpendicular as they travel around a circle. Then Ax and Ay move too 
(not usually perpendicular). The four vectors are in the Java demo on web.mit.edu/18.06. 

The SVD is seen graphically when Ax is perpendicular to Ay. Their directions at that 
moment give an orthonormal basis Ul, U2. Their lengths give the singular values a}, a2. 
The vectors x and y at that same moment are the orthonormal basis VI, V2. 

Searching the Web 

I will end with an application of the SVD to web search engines. When you google a word, 
you get a list of web sites in order of importance. You could try "four subspaces". 

The IDTS algorithm that we describe is one way to produce that ranked list. It begins 
with about 200 sites found from an index of key words, and after that we look only at links 
between pages. Search engines are link-based more than content-based. 

Start with the 200 sites and all sites that link to them and all sites they link to. That is 
our list, to be put in order. Importance can be measured by links out and links in. 
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1. The site is an authority: links come in from many sites. Especially from hubs. 

2. The site is a hub: links go out to many sites in the list. Especially to authorities. 

We want numbers Xl, ••• ,X N to rank the authorities and YI, ••• , Y N to rank the hubs. 
Start with a simple count: x~ and y~ count the links into and out of site i. 

I I 

Here is the point: A good authority has links from important sites (like hubs). Links 
from universities count more heavily than links from friends. A good hub is linked to 
important sites (like authorities). A link to amazon.com unfortunately means more than a 
link to wellesleycambridge.com. The rankings xO and yO from counting links are updated 
to xl and yl by taking account of good links (measuring their quality by xO and yo): 

Authority values x: = L y J 
j links to i 

Hub values Yl = LxJ 
i links to j 

(14) 

In matrix language those are Xl = AT yO and yl = Axo. The matrix A contains l's and O's, 
with aij = I when i links to j. In the language of graphs, A is an "adjacency matrix" 
for the World Wide Web (an enormous matrix). The new Xl and yl give better rankings, 
but not the best. Take another step like (14), to reach x 2 and y2: 

AT A and AAT appear x 2 = AT yl = AT Axo and y2 = AT xl = AATyO. (15) 

In two steps we are mUltiplying by AT A and AAT. Twenty steps will multiply by (AT A)10 
and (AAT)lO. When we take powers, the largest eigenvalue o-r begins to dominate. And 
the vectors x and y line up with the leading eigenvectors VI and Ul of AT A and AAT. 
We are computing the top terms in the SVD, by the power method that is discussed in 
Section 9.3. It is wonderful that linear algebra helps to understand the Web. 

Google actually creates rankings by a random walk that follows web links. The more 
often this random walk goes to a site, the higher the ranking. The frequency of visits 
gives the leading eigenvector (A = 1) of the normalized adjacency matrix for the Web. 
That Markov matrix has 2.7 billion rows and columns,jrom 2.7 billion web sites. 

This is the largest eigenvalue problem ever solved. The excellent book by Langville and 
Meyer, Google's PageRank and Beyond, explains in detail the science of search engines. 
See mathworks.com/company/newsletter/clevescorner/oct02_cleve.shtml 

But many of the important techniques are well-kept secrets of Google. Probably 
Google starts with last month's eigenvector as a first approximation, and runs the random 
walk very fast. To get a high ranking, you want a lot of links from important sites. 
The HITS algorithm is described in the 1999 Scientific American (June 16). But I don't 
think the SVD is mentioned there ... 

• REVIEW OF THE KEY IDEAS • 

1. The SVD factors A into U:EVT, with r singular values 0"1 > ... > O"r > O. 
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2. The numbers a-;:, .. . ,0-; are the nonzero eigenvalues of AAT and AT A. 

3. The orthonormal columns of V and V are eigenvectors of AAT and AT A. 

4. Those columns hold orthonormal bases for the four fundamental subspaces of A. 

5. Those bases diagonalize the matrix: AVi = (JiUi for i < r. This is AV = V"£. 

• WORKED EXAMPLES • 

6.7 A Identify by name these decompositions A = cIb I + ... +crbr of an m by n matrix. 
Each term is a rank one matrix (column c times row b). The rank of A is r. 

1. Orthogonal columns c 1, ... , C r and orthogonal rows b 1, ... , b r. 

2. Orthogonal columns c 1 , •.. , C r and triangular rows b 1 , ... , b r. 

3. Triangular columns CI, ... ,C r and triangular rows b I , ... ,br . 

A = C B is (m by r )(r by n). Triangular vectors C i and b i have zeros up to component i. 
The matrix C with columns Ci is lower triangular, the matrix B with rows bi is upper 
triangular. Where do the rank and the pivots and singular values come into this picture? 

Solution These three splittings A = C B are basic to linear algebra, pure or applied: 

1. Singular Value Decomposition A = V:E V T (orthogonal V, orthogonal :E VT) 

2. Gram-Schmidt Orthogonalization A = QR (orthogonal Q, triangular R) 

3. Gaussian Elimination A = LV (triangular L, triangular V) 

You might prefer to separate out the (Ji and pivots di and heights hi: 

1. A = V:E VT with unit vectors in V and V. The singular values are in :E. 

2. A = QHR with un,it vectors in Q and diagonal I 's in R. The heights hi are in H. 

3. A = LDV with diagonal! 's in Land V. The pivots are in D. 

Each hi tells the height of column i above the base from earlier columns. The volume 
of the full n-dimensional box (r = m = n) comes from A = V:EVT = LDV = QHR: 

1 det A 1 = 1 product of u's 1 = 1 product of d's 1 = 1 product of h's I· 

6.7.8 For A = xy T of rank one (2 by 2), compare A = V:EVT with A = SAS-I. 

Comment This started as an exam problem in 2007. It led further and became 
interesting. Now there is an essay called "The Four Fundamental Subspaces: 4 Lines" 
on web.mit.edu/I8.06. The Jordan form enters when y T x = 0 and A = 0 is repeated. 
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6.7.C Show that al > IAlmax. The largest singular value dominates all eigenvalues. 
Show that al > laij Imax. The largest singular value dominates all entries of A. 

Solution Start from A = U:E VT • Remember that multiplying by an orthogonal matrix 
does not change length: IIQxll = IIxll because II Qxll2 = xTQTQX = xTx = IIx1l2. 
This applies to Q = U and Q = VT

• In between is the diagonal matrix :E. 

(16) 

An eigenvector has IIAxll = IAllix II. SO (16) says that IAlllx II < adlx II. Then IAI < al. 
Apply also to the unit vector x = (1,0, ... ,0). Now Ax is the first column of A. Then 

by inequality (16), this column has length < at. Every entry must have magnitude < at. 

Example 5 Estimate the singular values al and a2 of A and A -I: 

Eigenvalues = 1 (17) 

Solution The length of the first column is .Jl + C2 < at, from the reasoning above. 
This confirms that at > I and al > C. Then al dominates the eigenvalues 1, 1 and the 
entry C. If C is very large then al is much bigger than the eigenvalues. 

This matrix A has determinant = 1. AT A also has determinant = 1 and then ata2 = 1. 
For this matrix, at > 1 and at > C lead to a2 < 1 and a2 < 1/ C. 

Conclusion: If C = 1000 then at > 1000 and a2 < 1/1000. A is ill-conditioned, 
slightly sick. Inverting A is easy by algebra, but solving Ax = b by elimination could be 
dangerous. A is close to a singular matrix even though both eigenvalues are A = 1. By 
slightly changing the 1, 2 entry from zero to 1/ C = 1/1000, the matrix becomes singular. 

Section 9.2 will explain how the ratio amax/amin governs the roundoff error in 
elimination. MATLAB warns you if this "condition number" is large. Here ad a2 > c2. 

Problem Set 6.7 

Problems 1-3 compute the SVD of a square singular matrix A. 

1 Find the eigenvalues and unit eigenvectors Vt, V2 of AT A. Then find Ul = Avdal: 

[
1 2] T [10 20] T [5 15] A = 3 6 and A A = 20 40 and AA = 15 45 . 

Verify that U I is a unit eigenvector of A AT. Complete the matrices U, :E, V. 

Jason
高亮
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2 Write down orthononnal bases for the four fundamental subspaces of this A. 

3 (a) Why is the trace of AT A equal to the sum of all at? 

(b) For every rank-one matrix, why is (Jf = sum of all at? 

Problems 4-7 ask for the SVD of matrices of rank 2. 

4 Find the eigenvalues and unit eigenvectors of AT A and AAT. Keep each Av = (JU: 

Fibonacci matrix A = [! ~] 

Construct the singular value decomposition and verify that A equals U:E VT. 

5 Use the svd part of the MATLAB demo eigshow to find those v's graphically. 

6 Compute AT A and AAT and their eigenvalues and unit eigenvectors for V and U. 

Rectangular matrix A _ [ 1 - 0 10] 
1 I . 

Check A V = U:E (this will decide ± signs in U). :E has the same shape as A. 

7 What is the closest rank-one approximation to that 2 by 3 matrix? 

8 A square invertible matrix has A-I = V :E-1 UT • This says that the singular values 
of A-I are l/(J(A). Show that (Jmax(A- 1) (Jmax(A) > 1. 

9 Suppose Ul, ... ,Un and Vb .. . ,Vn are orthononnal bases for Rn. ,Construct the 
matrix A that transfonns each V j into U j to give AVI = Ul, ... ,Avn = Un. 

10 Construct the matrix with rank one that has Av 12u for v = !(1, 1, 1, 1) and 
u = 1(2,2,1). Its only singular value is (Jl = __ 

11 Suppose A has orthogonal columns WI, W2, .. . ,Wn of lengths (Jl, (J2, ... ,(In. 
What are U, :E, and V in the SVD? 

12 Suppose A is a 2 by 2 symmetric matrix with unit eigenvectors UI and U2. If its 
eigenvalues are Al = 3 and A2 = -2, what are the matrices U, :E, VT in its SVD? 

13 If A = QR with an orthogonal matrix Q, the SVD of A is almost the same as the 
SVD of R. Which of the three matrices U,:E, V is changed because of Q? 

14 Suppose A is invertible (with (Jl > (J2 > 0). Change A by as small a matrix as 
possible to produce a singular matrix Ao. Hint: U and V do not change: 

From A = [UI U2] [(Jl (J2] [VI V2 r find the nearest Ao· 

Jason
高亮

Jason
高亮

Jason
高亮
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15 Why doesn't the SVD for A + I just use 2: + I? 

Challenge Problems 

16 (Search engine) Run a random walk x (2), ... , x (n) starting from web site x (1) = 1. 
Count the visits to each site. At each step the code chooses the next website x (k) 
with probabilities given by column x(k - 1) of A. At the end, p gives the fraction 
of time at each site from a histogram: count visits. The ran kings are based on p. 

Please compare p to the steady state eigenvector of the Markov matrix A: 

A = [0 .1 .2 .7; .05 0 .15 .8; .15 .25 0 .6; .1 .3 .6 0]' 

n = 100; x = zeros(l,n); x(l) = 1; 
for k = 2 : n x(k) = min(find(rand<cumsum(A(:, x(k - 1»»); end 
p = hist(x, 1 : 4)/n 

17 The 1, -1 first difference matrix A has AT A = second difference matrix. 
The singular vectors of A are sine vectors v and cosine vectors u. Then Av = (JU is 
the discrete form of d/dx(sincx) = c(coscx). This is the best SVD I have seen. 

1 0 0 

SYDor A A= 
-1 I 0 
o -1 1 
o 0-1 

ATA= -1 2-1 [ 2 -1 0] 

Orthogonal sine matrix 
1 [Sinn/4 

V = - sin2n/4 
,Ji sin 3n / 4 

o -1 2 

sin 2n / 4 sin 3n I 4] 
sin4n/4 sin6nl4 
sin 6n / 4 sin 9n / 4 

(a) Put numbers in V: The unit eigenvectors of AT A are singular vectors of A. 
Show that the columns of V have AT Av = AV with A = 2 - ,Ji, 2, 2 + ,Ji. 

(b) Multiply AV and verify that its columns are orthogonal. They are (JlUl and 
(J2U2 and (J3U3. The first columns of the cosine matrix U are Ul, U2, U3. 

(c) Since A is 4 by 3, we need a fourth orthogonal vector U4. It comes from the 
nullspace of AT. What is U4? 

The cosine vectors in U are eigenvectors of AAT. The fourth cosine is (1, 1, 1, 1)/2. 

1 -1 0 0 cos n 18 cos 2n /8 cos 3 n / 8 
AAT = -1 2 -IOU = _1_ cos3n/8 cos6n/8 cos9n/8 

o -1 2 -1 ,Ji cos5n/8 cos lOnl8 cos 15nl8 
o 0 -1 1 cos7n/8 cos 14n/8 cos21n/8 

Those angles n /8, 3n 18, 5n /8, 7n /8 fit 4 points with spacing n / 4 between 0 and 
n. The sine transform has three points n / 4, 2n / 4, 3n / 4. The full cosine transform 
includes U4 from the "zero frequency" or direct current eigenvector (1, 1, 1, 1). 

The 8 by 8 cosine transform in 2D is the workhorse of jpeg compression. Linear 
algebra (circulant, Toeplitz, orthogonal matrices) is at the heart of signal processing. 

Jason
高亮
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Table of Eigenvalues and Eigenvectors 

How are the properties of a matrix reflected in its eigenvalues and eigenvectors? 
This question is fundamental throughout Chapter 6. A table that organizes the key facts may 
be helpful. Here are the special properties of the eigenvalues Ai and the eigenvectors Xi. 

Symmetric: AT = A 

Orthogonal: QT = Q-l 

Skew-symmetric: AT = -A 

Complex Hermitian: AT = A 

Positive Definite: x T Ax > 0 

Markov: mij > 0, L:7=1 mij = 1 
Similar: B = M- 1 AM 

Projection: P = p 2 = pT 

Plane Rotation 

Reflection: I - 2uu T 

Rank One: uv T 

Inverse: A-I 

Shift: A + cI 

Stable Powers: An -+ 0 

Stable Exponential: eAt -+ 0 

Cyclic Permutation: row 1 of I last 

Tridiagonal: -1, 2, -Ion diagonals 

Diagonalizable: A = SAS-l 

Symmetric: A = QAQT 
Schur: A = QTQ-l 

Jordan: J = M-l AM 

Rectangular: A = U b VT 

real A's 

alllAI = I 

imaginary A's 

real A's 

all A > 0 

Amax = 1 
A(B) = A(A) 

A = 1; 0 

eiB and e-iB 

A=-I; 1, .. ,1 

A=vTu; 0, .. ,0 

I/A(A) 

A(A) + c 

alllAI < 1 

all Re A < 0 
Ak = e2xik/n 

Ak = 2 - 2cos ::'1 
diagonal of A 

diagonal of A (real) 

diagonal of T 

diagonal of J 

rank(A) = rank(b) 

orthogonal x T x j = 0 

orthogonal x T x j = 0 

orthogonal x T x j = 0 

orthogonal x T x j = 0 

orthogonal since AT = A 

steady state x > 0 

x(B) = M-1x(A) 

column space; nullspace 

x = (1, i) and (1, -i) 

u; whole plane ul. 

u; whole plane vl. 

keep eigenvectors of A 

keep eigenvectors of A 

any eigenvectors 

any eigenvectors 

xk = (1,Ak, ... ,Ak- I ) 

x k = (sin nk_j~\ ' sin ~t~ , ... ) 
columns of S are independent 

columns of Q are orthonormal 

columns of Q if AT A = AAT 

each block gives x = (0, .. , 1, .. ,0: 

eigenvectors of AT A, A AT in V, U 



Chapter 7 

Linear Transformations 

7 .. 1 The Idea of a Linear Transformation 

When a matrix A multiplies a vector v, it "transforms" v into another vector Av. 
In goes v, out comes T(v) = Av. A transformation T follows the same idea as a function. 
In goes a number x, out comes f(x). For one vector v or one number x, we mUltiply 
by the matrix or we evaluate the function. The deeper goal is to see all v's at once. We are 
transforming the whole space V when we mUltiply every v by A. 

Start again with a matrix A. It transforms v to Av. It transforms w to Aw. Then we 
know what happens to u = v + w. There is no doubt about Au, it has to equal Av + Aw. 
Matrix multiplication T (v) = A v gives a linear transformation: 

'. , . . - - - -

,Thetransronnatiou jslilleor if it m,e¢ts 'tltes.¢ reqyit(}lIleilts.JgraJ.lv .andw: 

(a) T(v + w) = T(v) + T(w) (b) T(cv) = cT(v) for all c. 

If the input is v = 0, the output must be T (v) = O. We combine (a) and (b) into one: 

titt¢3rttaJ(sf9rlfi~tlC)n, _T~cv idw) ·'inuS:t.e(J,~(li' ,c,T(v)+'lj·T(tp}. 

Again I can test matrix mUltiplication for linearity: A(cv + dw) = cAv + dAw is true. 
A linear transformation is highly restricted. Suppose T adds Uo to every vector. 

Then T(v) = v + Uo and T(w) = w + Uo. This isn't good, or at least it isn't linear. 
Applying T to v + w produces v + w + Uo. That is not the same as T(v) + T(w): 

Shift is not linear v + w + Uo is not T(v) + T(w) = v + Uo + w + Uo. 

The exception is when Uo = O. The transformation reduces to T(v) = v. This is the 
identity transformation (nothing moves, as in multiplication by the identity matrix). 
That is certainly linear. In this case the input space V is the same as the output space W. 

375 
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The linear-plus-shift transformation T(v) = Av + Uo is called "affine". Straight lines 
stay straight although T is not linear. Computer graphics works with affine transformations 
in Section 8.6, because we must be able to move images. 

Example 1 Choose a fixed vector a = (1,3,4), and let T(v) be the dot product a • v: 

The output is T(v) = a • v = VI + 3V2 + 4V3. 

This is linear. The inputs v come from three-dimensional space, so V = R3. The outputs 
are just numbers, so the output space is W = R I. We are multiplying by the row matrix 
A = [1 3 4]. Then T (v) = Av. 

You will get good at recognizing which transformations are linear. If the output involves 
squares or products or lengths, vi or V I V2 or II v II, then T is not linear. 

Example 2 The length T(v) = Ilvll is not linear. Requirement (a) for linearity would be 
Ilv + wll = Ilvll + Ilwll· Requirement (b) would be llevll = cllvll. Both are false! 

Not (a): The sides of a triangle satisfy an inequality II v + w II < II v II + II w II. 
Not (b): The length 11- vii is not -llvll. For negative c, we fail. 

Example 3 (Important) T is the transformation that rotates every vector by 30°. The 
"domain" is the xy plane (all input vectors v). The "range" is also the xy plane (all rotated 
vectors T(v». We described T without a matrix: rotate by 30°. 

Is rotation linear? Yes it is. We can rotate two vectors and add the results. The sum of 
rotations T (v) + T ( w) is the same as the rotation T (v + w) of the sum. The whole plane 
is turning together, in this linear transformation. 

Lines to Lines, Triangles to Triangles 

Figure 7.1 shows the line from v to w in the input space. It also shows the line from T (v) 
to T(w) in the output space. Linearity tells us: Every point on the input line goes onto 
the output line. And more than that: Equally spaced points go to equally spaced points. 
The middle point u = ~'l( + ~ w goes to the middle point T (u) = ~ T (v) + ~ T (w ). 

The second figure moves up a dimension. Now we have three comers VI, V2, V3. 
Those inputs have three outputs T(vt}, T(V2), T(V3). The input triangle goes onto the 
output triangle. Equally spaced points stay equally spaced (along the edges, and then 
between the edges). The middle point u = ~(VI + V2 + V3) goes to the middle point 
T(u) = ~(T(Vl) + T(v2) + T(V3)). 

The rule of linearity extends to combinations of three vectors or n vectors: 

(1) 
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v T(v) 

T(u) 

u~ ~W) 
Figure 7.1: Lines to lines, equal spacing to equal spacing, U = 0 to T(u) = O. 

Note Transformations have a language of their own. Where there is no matrix, we can't 
talk about a column space. But the idea can be rescued. The column space consisted of all 
outputs Av. The nullspace consisted of all inputs for which Av = O. Translate those into 
"range" and "kernel": 

Range of T = set of all outputs T(v): range corresponds to column space 

Kernelof T = set of all inputs for which T (v) = 0: kernel corresponds to nullspace. 

The range is in the output space W. The kernel is in the input space V. When T is 
multiplication by a matrix, T(v) = Av, you can translate to column space and nUllspace. 

Examples of Transformations (mostly linear) 

Example 4 Project every 3-dimensional vector straight down onto the x y plane. Then 
T(x, y, z) = (x, y, 0). The range is that plane, which contains every T(v). The kernel is 
the z axis (which projects down to zero). This projection is linear. 

Example 5 Project every 3-dimensional vector onto the horizontal plane z = 1. The 
vector v = (x, y, z) is transformed to T(v) = (x, y, 1). This transformation is not linear. 
Why not? It doesn't even transform v = 0 into T(v) = O. 

Multiply every 3-dimensional vector by a 3 by 3 matrix A. This T(v) = Av is linear. 

T(v + w) = A(v + w) does equal Av + Aw = T(v) + T(w) .. 

Example 6 Suppose A is an invertible matrix. The kernel of T is the zero vector; the 
range W equals the domain V. Another linear transformation is mUltiplication by A-I. 
This is the inverse transformation T-l, which brings every vector T(v) back to v: 

T-1(T(v)) = v matches the matrix multiplication A-1(Av) = v. 

We are reaching an unavoidable question. Are all linear transformations from V = Rn 
to W = Rm produced by matrices? When a linear T is described as a "rotation" or 
"projection" or " ... ", is there always a matrix hiding behind T? 

The answer is yes. This is an approach to linear algebra that doesn't start with 
matrices. The next section shows that we still end up with matrices. 
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Linear Transformations of the Plane 

It is more interesting to see a transformation than to define it. When a 2 by 2 matrix A 
multiplies all vectors in R2, we can watch how it acts. Start with a "house" that has eleven 
endpoints. Those eleven vectors v are transformed into eleven vectors Av. Straight lines 
between v's become straight lines between the transformed vectors Av. (The transfor
mation from house to house is linear!) Applying A to a standard house produces a new 
house-possibly stretched or rotated or otherwise unlivable. 

This part of the book is visual, not theoretical. We will show four houses and the 
matrices that produce them. The columns of H are the eleven comers of the first house. 
(H is 2 by 12, so plot2d will connect the 11th comer to the first.) The 11 points in the 
house matrix H are multiplied by A to produce the comers AH of the other houses. 

House 
matrix H= [

-6 
-7 

-6 -7 
2 1 

o 
8 

7 
1 

6 6 -3 -3 0 0 -6] 
2 -7 -7 -2 -2 -7 -7 . 

A = ICos 35° - sin 35~ 
Lsin 35° cos 35j 

A= 10.7 0.3l 
LO.3 0.7J 

Figure 7.2: Linear transformations of a house drawn by plot2d(A * H). 

• REVIEW OF THE KEY IDEAS • 

1. A transformation T takes each v in the input space to T(v) in the output space. 

2. T is linear if T(v + w) = T(v) + T(w) and T(cv) = cT(v): lines to lines. 
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3. Combinations to combinations: T (CIVI +···+cnvn) = Cl T(vd+···+cn T(vn). 

4. The transformation T(v) = Av + Vo is linear only if Vo = O. Then T(v) = Av. 

• WORKED EXAMPLES • 

7.1 A The elimination matrix un gives a shearing transformation from (x, y) to 
T(x, y) = (x, x + y). Draw the xy plane and show what happens to (1,0) and (1,1). 
What happens to points on the vertical lines x = ° and x = a? If the inputs fill the unit 
square ° < x < 1, ° < y < 1, draw the outputs (the transformed square). 

Solution The points (1,0) and (2,0) on the x axis transform by T to (1, 1) and (2,2). 
The horizontal x axis transforms to the 45° line (going through (0,0) of course). The points 
on the y axis are not moved because T (0, y) = (0, y). The y axis is the line of eigenvectors 
of T with A = 1. Points with x = a move up by a. 

Vertical lines slide up 
This is the shearing 
Squares to parallelograms 

~(1,1) 

~(1,0) 

(1,2) &(1,1) 
7.1 B A nonlinear transformation T is invertible if every b in the output space comes 
from exactly one x in the input space: T (x ) = b always has exactly one solution. 
Which of these transformations (on real numbers x) is invertible and what is T-I? 
None are linear, not even T3. When you solve T(x) = b, you are inverting T: 

1 
Ts (x) = - for nonzero x's 

x 

Solution Tl is not invertible: x 2 = 1 has two solutions and x 2 = -1 has no solution. 
T4 is not invertible because eX = -1 has no solution. (If the output space 

changes to positive b's then the inverse of eX = b is x = In b.) 

Notice Tf = identity. But Tj-(x) = x + 18. What are r](x) and Tl(x)? 

T2, T3 , Ts are invertible. The solutions to x 3 = b and x + 9 = b and ~ = b are unique: 
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Problem Set 7.1 

1 A linear transformation must leave the zero vector fixed: T(O) = O. Prove this from 
T(v + w) = T(v) + T(w) by choosing w = (and finish the proof). Prove it 
also from T(cv) = cT(v) by choosing c = __ 

2 Requirement (b) gives T(cv) = cT(v) and also T(dw) = dT(w). Then by addi
tion, requirement (a) gives T( ) = ( ). What is T(cv + dw + eu)? 

3 Which of these transformations are not linear? The input is v = (VI, V2): 

(a) T(v) = (V2, vd 
(d) T(v) = (0,1) 

(b) T(v) = (VI, vd 
(e) T(v) = VI - V2 

(c) T(v) = (0, vd 
(f) T(v) = VI V2· 

4 If Sand T are linear transformations, is S (T (v» linear or quadratic? 

(a) (Special case) If S(v) = v and T(v) = v, then S(T(v») = v or v 2? 

(b) (General case) S(WI +W2) = S(WI)+S(W2) and T(VI +V2) = T(vd+T(V2) 
com bine into 

S(T(VI + V2» = S( __ ) = __ + __ 

5 Suppose T(v) = v except that T(O, V2) = (0,0). Show that this transformation 
satisfies T(cv) = cT(v) but not T(v + w) = T(v) + T(w). 

6 Which of these transformations satisfy T (v + w) = T (v) + T ( w) and which satisfy 
T(cv) = cT(v)? 

(a) T(v) = v/llvll 
(d) T(v) = largest component of v. 

7 For these transformations of V = R 2 to W = R 2 , find T (T (v». Is this transforma
tion T2 linear? 

(a) T(v) =-v (b) T(v) = v + (1, 1) 

(c) T(v) = 900 rotation = (-V2, vd 
(d) T(v) = projection = (VI ~V2, VI ~V2). 

8 Find the range and kernel (like the column space and nullspace) of T: 

(a) T(v!, V2) = (VI - V2, 0) 

(c) T(VI' V2) = (0,0) 

(b) T(VI' V2, V3) = (VI, V2) 

(d) T(VI' V2) = (VI, VI). 

9 The "cyclic" transformation T is defined by T(Vl' V2, V3) = (V2' V3, vd. What is 
T(T(v»? What is T 3 (v)? What is TIOO(V)? Apply T a hundred times to v. 
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10 A linear transformation from V to W has an inverse from W to V when the range is 
all ofW and the kernel contains only v = O. Then T(v) = w has one solution v for 
each w in W. Why are these T's not invertible? 

(a) T(VI' V2) = (V2, V2) 

(b) T(VI' V2) = (VI, V2, VI + V2) 

(c) T(VI' V2) = VI 

11 If T(v) = Av and A is m by n, then T is "multiplication by A." 

(a) What are the input and output spaces V and W? 

(b) Why is range of T = column space of A? 

( c) Why is kernel of T = nullspace of A? 

12 Suppose a linear T transforms (1, 1) to (2,2) and (2,0) to (0,0). Find T(v): 

(a) v = (2,2) (b) v = (3,1) (c) v=(-1,1) (d) v = (a, b). 

Problems 13-19 may be harder. The input space V contains all 2 by 2 matrices M. 

13 M is any 2 by 2 matrix and A = [l ~ ]. The transformation T is defined by 
T(M) = AM. What rules of matrix multiplication show that T is linear? 

14 Suppose A = [l ~ ]. Show that the range of T is the whole matrix space V and the 
kernel is the zero matrix: 

(1) If AM = 0 prove that M must be the zero matrix. 

(2) Find a solution to AM = B for any 2 by 2 matrix B. 

15 Suppose A = [l ~]. Show that the identity matrix I is not in the range of T. Find a 
nonzero matrix M such that T(M) = AM is zero. 

16 Suppose T transposes every matrix M. Try to find a matrix A which gives AM = 
MT for every M. Show that no matrix A will do it. To professors: Is this a linear 
transformation that doesn't come from a matrix? 

17 The transformation T th~t transposes every matrix is definitely linear. Which ofthese 
extra properties are true? 

(a) T2 = identity transformation. 

(b) The kernel of T is the zero matrix. 

(c) Every matrix is in the range of T. 

(d) T(M) = -M is impossible. 

18 Suppose T(M) = [~8][ M ][8~]' Find a matrix with T(M) =f. O. Describe all 
matrices with T(M) = 0 (the kernel) and all output matrices T(M) (the range). 

19 If A and B are invertible and T(M) = AMB, find T-1(M) in the form ( )M( ). 
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Questions 20-26 are about house transformations. The output is T(H) = A H. 

20 How can you tell from the picture of T (house) that A is 

(a) a diagonal matrix? 

(b) a rank-one matrix? 

(c) a lower triangular matrix? 

21 Draw a picture of T (house) for these matrices: 

D=[~~] and A=[:~ :~] and u=[~ ~]. 
22 What are the conditions on A = [~ ~] to ensure that T (house) will 

(a) sit straight up? 

(b) expand the house by 3 in all directions? 

(c) rotate the house with no change in its shape? 

23 Describe T (house) when T(v) = -v + (1,0). This T is "affine". 

24 Change the house matrix H to add a chimney. 

25 The standard house is drawn by plot2d(H). Circles from 0 and lines from -: 

x = H(I, :)'; y = H(2, :)': 
axis([-lOlQ-lOlO]), axisCsquare') 
1 t( " "). pox, y, 0 , x, y, - , 

Test plot2d(A' * H) and plot2d(A' * A * H) with the matrices in Figure 7.1. 

26 Without a computer sketch the houses A * H for these matrices A: 

[~ .~] and [
.5 .5] 
.5 .5 

and [
.5 .5] 

-.5 .5 
and 

27 This code creates· a vector theta of 50 angles. It draws the unit circle and then 
T (circle) = ellipse. T(v) = Av takes circles to ellipses. 

A = [21;1 2] % You can change A 
theta = [0:2 * pi/SO:2 * pi]; 
circle = [cos(theta); sin(theta)]; 
ellipse = A * circle; 
axis([-4 4 -44]); axis('square') 
plot(circle(1 ,:), circle(2,:), ellipse(1 ,:), ellipse(2,:)) 

28 Add two eyes and a smile to the circle in Problem 27. (If one eye is dark and the 
other is light, you can tell when the face is reflected across the y axis.) Multiply by 
matrices A to get new faces. 
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Challenge Problems 

29 What conditions on det A = ad - be ensure that the output house AH will 

(a) be squashed onto a line? 

(b) keep its endpoints in clockwise order (not reflected)? 

(c) have the same area as the original house? 

383 

30 From A = U 1: VT (Singular Value Decomposition) A takes circles to ellipses. 
A V = U 1: says that the radius vectors VI and V2 of the circle go to the semi-axes 
atUl and a2u2 of the ellipse. Draw the circle and the ellipse for e = 30°: 

V=[~ b] U = [ C?S e - sin e ] 
sme cose 

31 Why does every linear transformation T from R2 to R2 take squares to parallelo
grams? Rectangles also go to parallelograms (squashed if T is not invertible). 
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7.2 The Matrix of a Linear Transformation 

The next pages assign a matrix to every linear transformation T. For ordinary column 
vectors, the input v is in V = Rn and the output T(v) is in W = Rm. The matrix A for 
this transformation T will be m by n. Our choice of bases in V and W will decide A. 

The standard basis vectors for Rn and Rm are the columns of I. That choice leads to 
a standard matrix, and T(v) = Av in the normal way. But these spaces also have other 
bases, so the same T is represented by other matrices. A main theme of linear algebra is to 
choose the bases that give the best matrix for T. 

When V and Ware not Rn and Rm, they still have bases. Each choice of basis leads 
to a matrix for T. When the input basis is different from the output basis, the matrix for 
T (v) = v will not be the identity I. It will be the "change of basis matrix". 

Key idea of this section 

Suppose we know T(v.), ... , T(vn) for the basis vectors VI, .... v l1 • 

Then linearity produces T (v) for every other input vector v. 

Reason Every v is a unique combination CI VI + ... + CnVn of the basis vectors Vi. 

Since T is a linear transformation (here is the moment for linearity), T(v) must be 
the same combination CI T(VI) + ... + cnT(vn) of the known outputs T(vd. 

Our first example gives the outputs T(v) for the standard basis vectors (1,0) and (0,1). 

Example 1 Suppose T transforms VI = (1,0) to T(vt} = (2,3,4). Suppose the second 
basis vector V2 = (0,1) goes to T(V2) = (5,5,5). If T is linear from R2 to R3 then its 
"standard matrix" is 3 by 2. Those outputs T (v I) and T (V2) go into its columns: 

T(VI + V2) = T(vt} + T(V2) 
combines the columns 

Example 2 The derivatives of the functions 1, x, x 2, x 3 are 0, 1, 2x, 3x2. Those are four 
facts about the transformlition T that "takes the derivative". The inputs and the outputs are 
functions! Now add the crucial fact that the "derivative transformation" T is linear: 

dv . 
. T(v) =-d 

x· 

d dv dw 
dx (cv + dw) = C dx + d dx' (1) 

It is exactly this linearity that you use to find all other derivatives. From the derivative 
of each separate power 1, x, x 2, x 3 (those are the basis vectors VI, V2, v3, V4) you find the 
derivative of any polynomial like 4 + x + x 2 + x 3: 

d 
dx (4 + x + x 2 + x 3

) = 1 + 2x + 3x
2 (because of linearity!) 
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This example applies T (the derivative d/dx) to the input v = 4Vl + V2 + V3 + V4. Here 
the input space V contains all combinations of 1, x, x 2 , x 3 . I call them vectors, you might 
call them functions. Those four vectors are a basis for the space V of cubic polynomials 
(degree < 3). Four derivatives tell us all derivatives in V. 

For the nullspace of A, we solve Av = O. For the kernel of the derivative T, we solve 
dv/dx = O. The solution is v = constant. The nullspace of T is one-dimensional, 
containing all constant functions (like the first basis function VI = 1). 

To find the range (or column space), look at all outputs from T (v) = d v / dx. The 
inputs are cubic polynomials a +bx +cx2 +dx3 , so the outputs are quadratic polynomials 
(degree < 2). For the output space W we have a choice. If W = cubics, then the range of 
T (the quadratics) is a subspace. If W = quadratics, then the range is all of W. 

That second choice emphasizes the difference between the domain or input space (V = 
cubics) and the image or output space (W = quadratics). V has dimension n = 4 and W 
has dimension m = 3. The "derivative matrix" below will be 3 by 4. 

The range of T is a three-dimensional subspace. The matrix will have rank r = 3. 
The kernel is one-dimensional. The sum 3 + 1 = 4 is the dimension of the input space. 
This was r + (n - r) = n in the Fundamental Theorem of Linear Algebra. Always 
(dimension of range) + (dimension of kernel) = dimension of input space. 

Example 3 The integral is the inverse of the derivative. That is the Fundamental Theo
rem of Calculus. We see it now in linear algebra. The transformation T-1 that "takes the 
integral from 0 to x" is linear! Apply T- 1 to 1, x, x 2 , which are WI, W2, W3: 

Integration is T-1 foX 1 dx = x, foX x dx = ! x 2 , foX x 2 dx = ~ x 3
• 

By linearity, the integral of W = B + ex + Dx2 is T-1(w) = Bx + !ex2 + ~Dx3. 
The integral of a quadratic is a cubic. The input space of T-1 is the quadratics, the output 
space is the cubics. Integration takes W back to V. Its matrix will be 4 by 3. 

Range of T- 1 The outputs B x + ! e x 2 + ~ D x 3 are cubics with no constant term. 

Kernel of T-1 The output is zero only if B = e = D = O. The nullspace is Z = {O}. 

Fundamental Theorem 3 + 0 is the dimension of the input space W for T- 1 
• 

Matrices for the Derivative and Integral 

We will show how the matrices A and A-I copy the derivative T and the integral T- 1• 

This is an excellent example from calculus. (I write A-I but I don't quite mean it.) 
Then comes the general rule-how to represent any linear transformation T by a matrix A. 

The derivative transforms the space V of cubics to the space W of quadratics. The 
basis for V is 1, x, x 2 , x 3 • The basis for W is 1, x, x 2. The derivative matrix is 3 by 4: 

~~I1~I{lzli[~~;~~~~~~~~~~~t' (2) 

J' •• "".:, '. ~.'. ::~. :,~. .,'::.'.~":~ 
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Why is A the correct matrix? Because multiplying by A agrees with transforming by T. 
Thederivativeofv = a+bx+cx2+dx3 is T(v) = b+2cx+3dx2. The same numbers 
band 2c and 3d appear when we multiply by the matrix A: 

Take the derivative 
[

0 1 0 0] o 0 2 0 
000 3 

a 
b 

(3) 
c 
d 

Look also at T- I . The integration matrix is 4 by 3. Watch how the following matrix starts 
with w = B + Cx + Dx2 and produces its integral 0 + Bx + tCx2 + ~Dx3: 

00 - -_. -

:0
1 ··~UJ~ 
-3 --

(4) 

I want to call that matrix A-I, and I will. But you realize that rectangular matrices don't 
have inverses. At least they don't have two-sided inverses. This rectangular A has a one
sided inverse. The integral is a one-sided inverse of the derivative! 

but 

o 0 0 0 
o 1 0 0 
o 0 1 0 
000 1 

If you integrate a function and then differentiate, you get back to the start. So AA- I = I. 
But if you differentiate before integrating, the constant term is lost. The integral of the 
derivative of 1 is zero: 

T- 1 T(1) = integral of zero function = O. 

This matches A-I A, whose first column is all zero. The derivative T has a kernel (the 
constant functions). Its matrix A has a nullspace. Main point again: A v copies T ( v). 

Construction of the Matrix 

Now we construct a matrix for any linear transformation. Suppose T transforms the space 
V (n-dimensional) to the space W (m-dimensional). We choose a basis VI. ... ,Vn for V 
and we choose a basis WI, ••• , W m for W. The matrix A will be m by n. To find the first 
column of A, apply T to the first basis vector VI. The output T(vd is in W. 

T (VI ) isaco~binati()ft all WI + ... + amI W m ()fth~ outputbq,sis for W. 

These numbers all, . .. , amI go into the first column of A. Transforming VI to T(vd 
matches multiplying (1,0, ... ,0) by A. It yields that first column of the matrix. 



7.2. The Matrix of a Linear Transformation 387 

When T is the derivative and the first basis vector is 1, its derivative is T(vd = o. 
So for the derivative matrix, the first column of A was all zero. 

For the integral, the first basis function is again 1. Its integral is the second basis 
function x. So the first column of A-I was (0, 1, 0, 0). Here is the construction of A. 

Key rule: The jth column of A is found by applying T to the jth basis vector Vj 

T (v j) = combination of basis vectors of W = a lj W I + ... + amj W m. (5) 

These numbers a lj , ... ,amj go into column j of A. The matrix is constructed to get the 
basis vectors right. Then linearity gets all other vectors right. Every v is a combination 
CI VI + ... +cnvn' and T(v) is a combination of the w's. When A multiplies the coefficient 
vector c = (CI,' .. , cn) in the v combination, Ac produces the coefficients in the T(v) 
combination. This is because matrix multiplication (combining columns) is linear like T. 

The matrix A tells us what T does. Every linear transformation from V to W can be 
converted to a matrix. This matrix depends on the bases. 

Example 4 If the bases change, T is the same but the matrix A is different. 
Suppose we reorder the basis to x, x 2, x 3, I for the cubics in V. Keep the original basis 

1, x, x 2 for the quadratics in W. The derivative of the first basis vector v I = x is the first 
basis vector WI = 1. So the first column of A looks different: 

[

1 ° ° 0] matrix for the derivative T 
Anew = ° 2 ° ° = when the bases change to ° ° 3 ° x,X2,x\ 1 and l,x,x2. 

When we reorder the basis of V, we reorder the columns of A. The input basis vector v j 
is responsible for column j. The output basis vector Wi is responsible for row i. Soon the 
changes in the bases will be more than permutations. 

Products A B Match Transformations TS 

The examples of derivative and integral made three points. First, linear transformations T 
are everywhere-in calculus and differential equations and linear algebra. Second, spaces 
other than Rn are important-we had functions in V and W. Third, T still boils down to a 
matrix A. Now we make sure that we can find this matrix. 

The next examples have V = W. We choose the same basis for both spaces. Then we 
can compare the matrices A2 and AB with the transformations T2 and TS. 

Example 5 T rotates every vector by the angle e. Here V = W = R2. Find A. 

Solution The standard basis is VI = (1,0) and V2 = (0,1). To find A, apply T to those 
basis vectors. In Figure 7.3a, they are rotated bye. The first vector (I, 0) swings around 
to (cos e, sin e). This equals cos e times (1,0) plus sin e times (0,1). Therefore those 
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numbers cos e and sin e go into the first column of A: 

[
cose 
sine 

] shows column 1 
[

COS e - sin e ] 
A =. e shows both columns. 

sme cos 

For the second column, transform the second vector (0. 1). The figure shows it rotated to 
(-sine,cose). Those numbers go into the second column. Multiplying A times (0,1) 
produces that column. A agrees with T on the basis, and on all v. 

, 
T(v ) = [- sin e ] 

2 cose 

, , 
, , T(vt} = T(V2) 

, = [1/2] " 1/2 , 
~----~~VI 

Figure 7.3: Two transformations: Rotation bye and projection onto the 45° line. 

Example 6 (Projection) Suppose T projects every plane vector onto the 45° line. 
Find its matrix for two different choices of the basis. We will find two matrices. 

Solution Start with a specially chosen basis, not drawn in Figure 7.3. The basis vector 
VI is along the 45° line. It projects to itself: T(vt} = VI. SO the first column of A 
contains 1 and 0. The second basis vector V2 is along the perpendicular line (135°). This 
basis vector projects to zero. So the second column of A contains ° and 0: 

Projection A = [~ ~ ] when V and W have the 45° and 135° basis. 

Now take the standard basis (1,0) and (0, 1). Figure 7.3b shows how (1,0) projects 
to (~, ~). That gives the first column of A. The other basis vector (0, 1) also projects to 
(~, ~). So the standard matrix for this projection is A: 

Same projection A = [i i] for the standard basis. 

Both A's are projection matrices. If you square A it doesn't change. Projecting twice is 
the same as projecting once: T2 = T so A2 = A. Notice what is hidden in that statement: 
The matrix for T 2 is A 2 . 
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We have come to something important-the real reason for the way matrices are multiplied. 
At last we discover why! Two transformations Sand T are represented by two matrices B 
and A. When we apply T to the output from S, we get the "composition" T S. When we 
apply A after B, we get the matrix product AB. Matrix multiplication gives the correct 
matrix A B to represent T S . 

The transformation S is from a space U to V. Its matrix B uses a basis u 1 , ... , up for 
U and a basis VI, ... , vn for V. The matrix is n by p. The transformation T is from V 
to W as before. Its matrix A must use the same basis VI, ... ,Vn for V-this is the output 
space for S and the input space for T. Then the matrix AB matches TS: 

MUitiplicatiOI1The linear rransfQt1Ilatibri TSstart-s with atly vectoff/, in U,.gees 
to S(u) in Yand then to T(S~~)· hi W. The Jl1attlX AJlst~rt$ ",ith >atlyxiIiRiJ,· 
goes to Bx irian atldthentoABxinRm.'I1lel11atrixAB correctly'repre.sentsTS: 

TS: U -+ V -+ W AB: (m by n)(n by p) = (m by p). 

The input is u = XIUI + ... + xpup. The output T(S(u» matches the output ABx. 
Product of transformations matches product of matrices. 

The most important cases are when the spaces U, V, Ware the same and their bases are 
the same. With m = n = p we have square matrices. 

Example 7 S rotates the plane by 8 and T also rotates by 8. Then T S rotates by 28. 
This transformation T2 corresponds to the rotation matrix A 2 through 28: 

T=S A=B T2 = rotation by 28 A 2 _ [cos 28 - sin 28 ] (6) 
- sin 28 cos 28 . 

By matching (transformation)2 with (matrix)2, we pick up the formulas for cos 28 
and sin 28. Multiply A times A: 

[
COS8 -sin8] [cos 8 -sin8] = [cos2 8 -sin

2
8 -2sin8cos8] 

sin 8 cos 8 sin 8 cos 8 2 sin 8 cos 8 cos2 8 - sin2 8· (7) 

Comparing (6) with (7) produces cos 28 = cos2 8 - sin2 8 and sin 28 - 2 sin 8 cos 8. 
Trigonometry (the double angle rule) comes from linear algebra. 

Example 8 S rotates by 8 and T rotates by -8. Then TS = I matches AB = I. 
In this case T(S(u)) is u. We rotate forward and back. For the matrices to match, ABx 

must be x. The two matrices are inverses. Check this by putting cos( -8) = cos 8 and 
sine -8) = - sin 8 into the backward rotation matrix: 

AB = [ c~s8 
-sm8 

sin 8] [c~s 8 - sin 8] = [cos
2

8 + sin
2 

8 0 ] 
cos 8 sm 8 cos 8 0 cos2 8 + sin2 8 = I. 
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Earlier T took the derivative and S took the integral. The transformation T S is the 
identity but not ST. Therefore AB is the identity matrix but not BA: 

[

0 1 0 0] 
AB = 0 0 2 0 

o 0 0 3 

o 0 
1 0 

o ~ 
o 0 

o 
o 
o 
1 
"3 

=! but BA= 

o 0 0 0 
o 1 0 0 
o 0 1 0 
000 1 

The: Identity bansfol"mation and the Change of Basis Matrix 

We now find the matrix for the special and boring transformation T (v) = v. This 
identity transformation does nothing to v. The matrix for T = ! also does nothing, 
provided the output basis is the same as the input basis. The output T (VI) is vI. When the 
bases are the same, this is WI. SO the first column of A is (1,0, ... ,0). 

When each autput 1f(v J7) = v jj ':5' the: same' as. W! jj" the' matrix iSinst I. 

This seems reasonable: The identity transformation is represented by the identity matrix. 
But suppose the bases are different. Then T(vd = VI is a combination of the w's. 
That combination mll WI + ... + mni wn tells the first column of the matrix (call it M). 

Idennt:f 
transformation 

When the outputs T(v j) = v j are combinations 
'L7 = 1 m ij Wi, the "change of basis matrix" is M. 

The basis is changing but the vectors themselves are not changing: T (v) = v. When the 
inputs have one basis and the outputs have another basis, the matrix is not! . 

EXample 9J The input basis is VI = (3,7) and V2 = (2,5). The output basis is WI 

(1,0) and W2 = (0,1). Then the matrix M is easy to compute: 

Change of basis The matrix for T(v) = v is M = [; ;]. 

Reason The first input is the basis vector VI = (3,7). The output is also (3,7) which we 
express as 3WI + 7W2. Then the first column of M contains 3 and 7. 

This seems too simple to be important. It becomes trickier when the change of basis 
goes the other way. We get the inverse of the previous matrix M: 

EXample 1QI The input basis is now VI = (1,0) and V2 = (0,1). The outputs are just 
T(v) = v. But the output basis is now WI = (3,7) and W2 = (2,5). 

Reverse the bases 
Invert the matrix 

The matrix for T(v) = V is [3 2]-1 = [ 5 -2] 
7 5 -7 3' 

Reason The first input is VI = (1,0). The output is also VI but we express it as 5WI -

7W2. Check that 5(3,7) - 7(2,5) does produce (1,0). We are combining the columns of 
the previous M to get the columns of !. The matrix to do that is M- I . 
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Change basis 
Change back 
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A mathematician would say that the matrix M M- 1 corresponds to the product of two 
identity transformations. We start and end with the same basis (1,0) and (0, 1). Matrix 
multiplication must give I. So the two change of basis matrices are inverses. 

One thing is sure. Multiplying A times (1, 0, ... ,0) gives column 1 of the matrix. The 
novelty of this section is that (1, 0, ... ,0) stands for the first vector VI, written in the ba
sis of v's. Then column 1 of the matrix is that same vector vI, written in the standard basis. 

Wavelet Transform = Change to Wavelet Basis 

Wavelets are little waves. They have different lengths and they are localized at different 
places. The first basis vector is not actually a wavelet, it is the very useful fiat vector of all 
ones. This example shows "Haar wavelets": 

1 1 1 ° 
Haar basis 

1 1 -1 ° (8) Wl= 1 W2 = -1 W3 = 

° 
W4 = 1 

1 -1 ° -1 

Those vectors are orthogonal, which is good. You see how W3 is localized in the first 
half and W4 is localized in the second half. The wavelet transform finds the coefficients 
CI, C2, C3, C4 when the input signal v = (VI, V2, V3, V4) is expressed in the wavelet basis: 

The coefficients C3 and C4 tell us about details in the first half and last half of v. The 
coefficient Cl is the average. 

Why do want to change the basis? I think of VI, V2, V3, V4 as the intensities of a signal. 
In audio they are volumes of sound. In images they are pixel values on a scale of black 
to white. An electrocardiogram is a medical signal. Of course n = 4 is very short, and 
n = 10,000 is more realistic. We may need to compress that long signal, by keeping only 
the largest 5% of the coefficients. This is 20 : 1 compression and (to give only two of its 
applications) it makes High Definition TV and video conferencing possible. 

If we keep only 5% of the standard basis coefficients, we lose 95% of the signal. 
In image processing, 95% of the image disappears. In audio, 95% of the tape goes blank. 
But if we choose a better basis of w's, 5% of the basis vectors can combine to come very 
close to the original signal. In image processing and audio coding, you can't see or hear 
the difference. We don't need the other 95%! 

One good basis vector is the fiat (1, 1, 1, 1). That part alone can represent the con
stant background of our image. A short wave like (0,0, 1, -1) or in higher dimensions 
(0,0,0,0,0,0, 1, -1) represents a detail at the end of the signal. 



392 Chapter 7. Linear Transformations 

The three steps are the transform and compression and inverse transform. 

input v .~''','; coefficients c 
····llos.s~s~j" .' . -

:... .... .. ':"'-:": . 
..-.. -.;--' ::":, ..-.. 

compressed c : .~:: compressed v 
. ": . ":_"-,'_,_:: "·~~.<1 ... \~, ____ .. -,-:: _"~_ ',' 

[recon~(ntctl" 

In linear algebra, where everything is perfect, we omit the compression step. The output 
v is exact! y the same as the input v. The transform gives c = W -1 v and the reconstruction 
brings back v = We. In true signal processing, where nothing is perfect but everything is 
fast, the transform (lossless) and the compression (which only loses unnecessary informa
tion) are absolutely the keys to success. The output is v = We. 

I will show those steps for a typical vector like v = (6,4,5, 1). Its wavelet coefficients 
are C = (4,1,1,2). The reconstruction 4Wl + W2 + W3 + 2W4 is v = We: 

6 1 1 I 0 1110 

: = 4 ~ + _~ + -~ + 2 ~ ~ _~ -~ ~ 
1 1 -1 0 -1 1 -1 0-1 

4 
1 
1 
2 

(10) 

Those coefficients care W- l v. Inverting this basis matrix W is easy because the w's in its 
columns are orthogonal. But they are not unit vectors, so rescale: 

W- l = 

1 
4" 

1 
4" 

1 
1: 

1 
1: 

1 1 1 
1 1-1 
1 -1 0 
001 

1 
-1 
o 

-1 

The ~ 's in the first row of c = W-1v mean that Cl = 4 is the average of 6,4,5,1. 

Example 11 (Same wavelet basis by recursion) I can't resist showing you a faster 
way to find the c's. The special point of the wavelet basis is that you can pick off the 
details in C3 and C4, before the coarse details in C2 and the overall average in Cl. A picture 
will explain this "multiscale" method, which is in Chapter 1 of my textbook with Nguyen 
on Wavelets and Filter Banks (Wellesley-Cambridge Press). 

Split v = (6,4,5, 1) into averages and waves at small scale and then large scale: 

GhEl-b, 
t ~ 

averages differences/2 

C3 1 
5 5 3 3 I plus Ii i 211 C4 2 

~I c=J 2 t ~ 
average difference /2 

Cl 4 
4 4 4 4 pillS 11 11 C2 1 

1 I 1 
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Fourier Transform (DFT) = Change to Fourier Basis 

The first thing an electrical engineer does with a signal is to take its Fourier transform. 
For finite vectors we are speaking about the Discrete Fourier Transform. The DFT 
involves complex numbers (powers of e27Ci / n ). But if we choose n = 4, the matrices 
are small and the only complex numbers are i and i 3 = -i. A true electrical engineer 
would write j instead of i for .J=T. 

Fourier basis W 1 to W n 

in the columns of F 
F.····· .. · 

1 
1 
1 

,1. 

The first column is the useful fiat basis vector (1, 1, 1, 1). It represents the average signal 
or the direct current (the DC term). It is a wave at zero frequency. The third column is 
(1, -1, 1, -1), which alternates at the highest frequency. The Fourier transform decom
poses the signal into waves at equally spaced frequencies. 

The Fourier matrix F is absolutely the most important complex matrix in mathematics 
and science and engineering. Section 10.3 of this book explains the Fast Fourier 
Transform: it can be seen as a factorization of F into matrices with many zeros. 
The FFT has revolutionized entire industries, by speeding up the Fourier transform. 
The beautiful thing is that F- I looks like F, with i changed to -i: 

Fourier transform v to c 
1 1 1 1 

F-1 =! 1 (-i) (_i)2 (-i)3 I-
v = CIWI + ... + CnWn = Fc = -F. 
Fourier coefficients c = F-1v 4 1 (_i)2 (_i)4 (-i)6 4 

1 (_i)3 (_i)6 (_i)9 

The MATLAB command c = fft( v) produces the Fourier coefficients CI, ••• , Cn of the 
vector v. It multiplies v by F-1 (fast). 

• REVIEW OF THE KEY IDEAS • 

1. If we know T(VI), ... , T(vn ) for a basis, linearity will determine all other T(v). 

{

Linear transformation T} Matrix A (m by n) 
2. Input basis v I , . . ., V n -+ represents T 

Output basis WI, ..• , Wm in these bases 

3. The derivative and integral matrices are one-sided inverses: d(constant)/dx = 0: 

(Derivative) (Integral) = I is the Fundamental Theorem of Calculus. 

4. If A and B represent T and S, and the output basis for S is the input basis for T, 
then the matrix AB represents the transformation T(S(u)). 
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5. The change of basis matrix M represents T (v) = v. Its columns are the coefficients 
of the output basis expressed in the input basis: W j = mljVI + ... + mnjvn . 

• WORKED EXAMPLES • 

7.2 A U sing the standard basis, find the 4 by 4 matrix P that represents a cyclic 
permutation T from x = (XI,X2,X3,X4) to T(x) = (X4,XI,X2,X3). Find the matrix 
for T2. What is the triple shift T 3(x) and why is T3 = T- I? 

Find two real independent eigenvectors of P. What are all the eigenvalues of P? 

Solution The first vector (1,0,0,0) in the standard basis transforms to (0, 1,0,0) which 
is the second basis vector. So the first column of P is (0, 1,0,0). The other three columns 
corne from transforming the other three standard basis vectors: 

P= 

o 0 0 1 
1 000 
o 1 0 0 
o 0 1 0 

Xl 

Then P X2 

X3 

X4 

x4 

Xl copies T. 
X2 

X3 

Since we used the standard basis, T is ordinary multiplication by P. The matrix for T2 is 
a "double cyclic shift" p 2 and it produces (X3, X4, Xl, X2). 

The triple shift T3 will transform x = (X},X2,X3,X4) to T3(x) = (X2,X3,X4,xd. 

If we apply T once more we are back to the original x. So T4 = identity transformation 
and P 4 = identity matrix. 

Two real eigenvectors of Pare (1, 1, I, 1) with eigenvalue A = I and (I, -1, 1, -1) 
with eigenvalue A = -1. The shift leaves (1, 1, 1, 1) unchanged and it reverses signs in 
(1, -1, 1, -1). The other, eigenvalues are i and -i. The determinant is AIA2A3A4 = -1. 

Notice that the eigenvalues 1, i, -1, -i add to zero (the trace of P). They are the 
4th roots of 1, since det( P - AI) = A 4 - 1. They are at angles 00

, 900
, 1800

, 2700 

in the complex plane. The Fourier matrix F is the eigenvector matrix for P. 

7.2 B The space of 2 by 2 matrices has these four "vectors" as a basis: 

T is the linear transformation that transposes every 2 by 2 matrix. What is the matrix A 
that represents T in this basis (output basis = input basis)? What is the inverse matrix 
A-I? What is the transformation T-l that inverts the transpose operation? 
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Solution Transposing those four "basis matrices" just reverses V2 and V3: 

T(Vl) = VI 

T(V2) = V3 
T(V3) = V2 
T(V4) = V4 

gives the four columns of A = 
1 000 
001 0 
o 100 
000 I 
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The inverse matrix A-I is the same as A. The inverse transformation T- I is the same as 
T. If we transpose and transpose again, the final output equals the original input. 

Problem Set 7.2 

Questions 1-4 extend the first derivative example to higher derivatives. 

1 The transformation S takes the second derivative. Keep I, X, x 2 , x 3 as the basis 
VI, V2, V3, V4 and also as WI, W2, W3, W4. Write SVI, SV2, SV3, SV4 in terms of 
the w's. Find the 4 by 4 matrix B for S. 

2 What functions have v" = O? They are in the kernel of the second derivative S. 
What vectors are in the nullspace of its matrix B in Problem I? 

3 B is not the square of a rectangular first derivative matrix: 

[

0 1 0 0] 
A = 0 0 2 0 does not allow A2. 

000 3 

Add a zero row to A, so that output space = input space. Compare A2 with B. 
Conclusion: For B = A2 we want output basis = basis. Then m = n. 

4 (a) The product TS of first and second derivatives produces the third derivative. 
Add zeros to make 4 by 4 matrices, then compute A B . 

(b) The matrix B2 corresponds to S2 = fourth derivative. Why is this zero? 

Questions 5-9 are about a particular T and its matrix A. 

5 With bases VI, V2, V3 and WI, W2, W3, suppose T(Vl) = W2 and T(V2) = T(V3) = 
WI + W3. T is a linear transformation. Find the matrix A and multiply by the 
vector (1, 1, 1). What is the output from T when the input is V I + V2 + V3? 

6 Since T(V2) = T(V3), the solutions to T(v) = 0 are V = __ . What vectors are 
in the nUllspace of A? Find all solutions to T(v) = W2. 

7 Find a vector that is not in the column space of A. Find a combination of w's that is 
not in the range of T. 

8 You don't have enough information to determine T2. Why is its matrix not necessar
ily A 2? What more information do you need? 
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9 Find the rank of A. This is not the dimension of the output space W. It is the 
dimension of the of T. 

Questions 10-13 are about invertible linear transformations. 

10 Suppose T(vd = WI + W2 + W3 and T(V2) = W2 + W3 and T(V3) = W3. Find 
the matrix A for T using these basis vectors. What input vector v gives T ( v) = WI? 

11 Invert the matrix A in Problem 10. Also invert the transformation T-what are 
T- 1(wd and T- 1(W2) and T-I(W3)? 

12 Which of these are true and why is the other one ridiculous? 

(a) T-1T = I (b) T-I(T(vd) = VI 

13 Suppose the spaces V and W have the same basis VI, V2. 

(a) Describe a transformation T (not I) that is its own inverse. 

(b) Describe a transformation T (not I) that equals T2. 

(c) Why can't the same T be used for both (a) and (b)? 

Questions 14-19 are about changing the basis. 

14 (a) What matrix transforms (1, 0) into (2,5) and transforms (0, 1) to (1, 3)? 

(b) What matrix transforms (2,5) to (1, 0) and (1,3) to (0, 1)? 

(c) Why does no matrix transform (2,6) to (1,0) and (1,3) to (0, 1)? 

15 (a) What matrix M transforms (1,0) and (0, 1) to (r, t) and (s, u)? 

(b) What matrix N transforms (a, c) and (b, d) to (1,0) and (0, 1)? 

(c) What condition on a, b, c, d will make part (b) impossible? 

16 (a) How do M and N in Problem 15 yield the matrix that transforms (a, c) to (r, t) 
and (b, d) to (s, u)? 

(b) What matrix transforms (2,5) to (1, 1) and (1,3) to (0, 2)? 

17 If you keep the same basis vectors but put them in a different order, the change of 
basis matrix M is a matrix. If you keep the basis vectors in order but change 
their lengths, M is a matrix. 

18 The matrix that rotates the axis vectors (1, 0) and (0, 1) through an angle e is Q. 
What are the coordinates (a, b) of the original (1,0) using the new (rotated) axes? 
This inverse can be tricky. Draw a figure or solve for a and b: 

Q = [c?S e - sin e] 
sme cose [ 1] = a [C?S e] + b [- sin e] . ° sme cose 
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19 The matrix that transforms (1,0) and (0,1) to (1, 4) and (1,5) is M -
The combination a(1,4) + b(1,5) that equals (1,0) has (a, b) = ( , ). 
How are those new coordinates of (1,0) related to M or M- I ? 

Questions 20-23 are about the space of quadratic polynomials A + Bx + Cx 2 • 

20 The parabola WI = !(x2 + x) equals one at x = 1, and zero at x = 0 and x = -1. 
Find the parabolas W2, W3, and then find y(x) by linearity. 

(a) W2 equals one at x = 0 and zero at x = 1 and x = -1. 

(b) W 3 equals one at x = -1 and zero at x = 0 and x = 1. 

(c) y(x) equals 4 at x = 1 and 5 at x = 0 and 6 at x = -1. Use WI, W2, W3. 

21 One basis for second-degree polynomials is VI = 1 and V2 = x and V3 = x 2. 
Another basis is WI, W2, W3 from Problem 20. Find two change of basis matrices, 
from the w's to the V's and from the V's to the w's. 

22 What are the three equations for A, B, C if the parabola Y = A + B x + C x2 equals 
4 at x = a and 5 at x = band 6 at x = c? Find the determinant of the 3 by 3 matrix. 
That matrix transforms values like 4, 5, 6 to parabolas-or is it the other way? 

23 Under what condition on the numbers m I, m2, ... , m9 do these three parabolas give 
a basis for the space of all parabolas? 

24 The Gram-Schmidt process changes a basis aI, a2, a3 to an orthonormal basis 
QI,Q2,q3. These are columns in A = QR. Show that R is the change of basis 
matrix from the a's to the Q's (a2 is what combination of Q 's when A = QR?). 

25 Elimination changes the rows of A to the rows of U with A = L U. Row 2 of A is 
what combination of the rows of U? Writing AT = U T LT to work with columns, 
the change of basis matrix is M = LT. (We have bases provided the matrices are 
--.) 

26 Suppose vI, V2, V3 are eigenvectors for T. This means T(Vi) = AiVi for i = 
1, 2, 3. What is the matrix for T when the input and output bases are the v's? 

27 Every invertible linear transformation can have I as its matrix! Choose any input 
basis VI, •.. ,Vn . For output basis choose Wi = T(Vi). Why must T be invertible? 

28 Using VI = WI and V2 = W2 find the standard matrix for these T's: 

29 Suppose T is reflection across the x axis and S is reflection across the y axis. The 
domain V is the xy plane. If V = (x, y) what is S(T(v»? Find a simpler description 
of the product ST. 
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30 Suppose T is reflection across the 45° line, and S is reflection across the y axis. 
If v = (2, 1) then T(v) = (1,2). Find S(T(v» and T(S(v». This shows that 
generally ST #- TS. 

31 Show that the product ST of two reflections is a rotation. Multiply these reflection 
matrices to find the rotation angle: 

[

COS 28 sin 28] 
sin 28 - cos 28 [

COS 2a sin 2a] 
sin2a -cos2a . 

32 True or false: If we know T(v) for n different nonzero vectors in Rn, then we know 
T(v) for every vector in Rn. 

33 Express e = (1,0, 0, 0) and v = (1, -1, 1, -1) in the wavelet basis, as in equa
tions (8-10). The coefficients CI, C2, C3, C4 solve We = e and We = v. 

34 To represent v = (7,5,3, 1) in the wavelet basis, start with (6, 6, 2, 2)+(1, -1,1, -1). 
Then write 6,6,2,2 as an overall average plus a difference, using 1,1,1,1 and 
1,1,-1,-1. 

35 What are the eight vectors in the wavelet basis for R8? They include the long wavelet 
(1, 1, 1, 1, -1 , -1, -1 , -1) and the short wavelet (1, -1 , 0, 0, 0, 0, 0, 0). 

36 Suppose we have two bases v I, ... , Vn and WI, . .. , Wn for Rn. If a vector has 
coefficients bi in one basis and Ci in the other basis, what is the change of basis 
matrix in b = Me? Start from 

bivi +···+bnvn = Vb =CIWI +",+cnwn = We. 

Your answer represents T(v) = v with input basis of v's and output basis of w's. 
Because of different bases, the matrix is not I. 

Challenge Problems 
, 

37 The space M of 2 by 2 matrices has the basis VI, V2, V3, V4 in Worked 
Example 7.2 B. Suppose T multiplies each matrix by [~ ~]. What 4 by 4 matrix 
A represents this transformation T on matrix space? 

38 Suppose A is a 3 by 4 matrix of rank r = 2, and T(v) = Av. Choose input basis 
vectors v I, v2 from the row space of A and v3, v 4 from the nUIlspace. Choose output 
basis WI = AVl, W2 = AV2 in the column space and W3 from the nullspace of AT. 
What specially simple matrix represents this T in these special bases? 
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7.3 Diagonalization and the Pseudoinverse 

This section produces better matrices by choosing better bases. When the goal is a diagonal 
matrix, one way is a basis of eigenvectors. The other way is two bases (the input and output 
bases are different). Those left and right singular vectors are orthonormal basis vectors for 
the four fundamental subspaces of A. They come from the SVD. 

By reversing those input and output bases, we will find the "pseudoinverse" of A. 
This matrix A + sends Rm back to Rn , and it sends column space back to row space. 

The truth is that all our great factorizations of A can be regarded as a change of basis. 
But this is a short section, so we concentrate on the two outstanding examples. In both 
cases the good matrix is diagonal. It is A with one basis or :E with two bases. 

1. S-1 AS = A when the input and output bases are eigenvectors of A. 

2. U -1 A V = ~ when those bases are eigenvectors of A T A and A AT. 

You see immediately the difference between A and :E. In A the bases are the same. 
Then m = n and the matrix A must be square. And some square matrices cannot be 
diagonalized by any S, because they don't have n independent eigenvectors. 

In :E the input and output bases are different. The matrix A can be rectangular. 
The bases are orthonormal because AT A and AAT are symmetric. Then U- 1 = UT 

and V-I = VT • Every matrix A is allowed, and A has the diagonal form :E. 
This is the Singular Value Decomposition (SVD) of Section 6.7. 

The eigenvector basis is orthonormal only when AT A = AAT (a "nonnal" matrix). 
That includes symmetric and anti symmetric and orthogonal matrices (special might be a 
better word than nonnal). In this case the singular values in '.E are the absolute values 
(Ji = IAi I, so that :E = abs(A). The two diagonalizations are the same when AT A = AAT, 
except for possible factors -1 (real) and eifJ (complex). 

I will just note that the Gram-Schmidt factorization A = QR chooses only one new 
basis. That is the orthogonal output basis given by Q. The input uses the standard basis 
given by I. We don't reach a diagonal :E, but we do reach a triangular R. The output basis 
matrix appears on the left and the input basis appears on the right, in A = QRI. 

We start with input basis equal to output basis. That will produce Sand S-I. 

Similar Matrices: A and S-l AS and W- 1 A W 

Begin with a square matrix and one basis. The input space V is Rn and the output space W 
is also Rn. The standard basis vectors are the columns of I. The matrix is n by n, and we 
call it A. The linear transformation T is "multiplication by A", 

Most of this book has been about one fundamental problem-to make the matrix simple. 
We made it triangular in Chapter 2 (by elimination) and Chapter 4 (by Gram-Schmidt), 
We made it diagonal in Chapter 6 (by eigenvectors). Now that change from A to A 
comes from a change of basis: Eigenvalue matrix from eigenvector basis, 
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Here are the main facts in advance. When you change the basis for V, the matrix 
changes from A to AM. Because V is the input space, the matrix M goes on the right (to 
come first). When you change the basis for W, the new matrix is M-1 A. We are working 
with the output space so M-1 is on the left (to come last). 

If you change both bases in the same way, the new matrix is M- 1 AM. The good 
basis vectors are the eigenvectors of A, when the matrix becomes S-I AS = A. 

Reason To find column 1 of the matrix, input the first basis vector x I. The transformation 
multiplies by A. The output is Ax 1 = A 1 X 1. This is A 1 times the first basis vector plus 
zero times the other basis vectors. Therefore the first column ofthe matrix is (AI, 0, ... ,0). 
In the eigenvector basis, the matrix is diagonal. 

Example 1 Project onto the line y = - x that goes from northwest to southeast. 
The vector (1,0) projects to (.5, -.5) on that line. The projection of (0,1) is (-.5, .5): 

1. Standard matrix: Project standard basis 

2. Find the diagonal matrix A in the eigenvector basis. 

Solution The eigenvectors for this projection are Xl = (1, -1) and X2 = (1,1). The 
first eigenvector lies on the 1350 line and the second is perpendicular (on the 450 line). 
Their projections are x 1 and O. The eigenvalues are Al = 1 and A2 = O. 

2. Diagonalized matrix: Project eigenvectors A = [b ~]. 

3. Find a third matrix B using another basis VI = WI = (2,0) and V2 = W2 = 
(1,1). 

Solution W I is not an eigenvector, so the matrix B in this basis will not be diagonal. 
The first way to compute B follows the rule of Section 7.2: 

Find column j of the matrix by writing the projection T (v j) as a combination of w's. 

Apply the projection T to (2,0). The result is (1, -1) which is WI -W2. SO the first column 
of B contains 1 and -1. The second vector W2 = (1,1) projects to zero, so the second 
column of B contains 0 and O. The eigenvalues must stay at 1 and 0: 

3. Third similar matrix: Project WI and W2 B = [-~ ~l (1) 

The second way to find the same B is more insightful. Use W- 1 and W to change 
between the standard basis and the basis of w's. Those change of basis matrices are 
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representing the identity transformation! The product of transformations is just IT I. 
The product of matrices is B = W- 1 A W. This approach shows that B is similar to A. 

" . .,-" ." .:-.:,'", ,;\' . -, -.' 

ForanYbasi$.un,.. .. ,.w~ .... find.thematrixlfiit three steps.,· •. Chang~1:he .. inpllf.p~sis. 
to ... the§tMqardbasi$Wjtl1T¥ ... The.rn~trixinllie·.st~l?:dat¢rbasis'is 1;·.ehange.th~ 
outputbasis backtotliew'swithW..:,l, Thenl'J ···~···W"-cj ~'lV repre~e",ts IT 1: 

Bw's to w's = Ws~~dard to W's A standard Ww's to standard ·(2). 

A change of basis produces a similarity transformation to W-l A W in the matrix. 

Example 2 (continuing with the projection) Apply this W-l A W rule to find B, when 
the basis (2,0) and (1, 1) is in the columns of W: 

[1 _1] [ 1 _1] [2 1] [ 1 0] W -1AW - 2 2 2 2 _ 
- 1 1 - . o 1 -- - 0 1 - 1 0 2 2 

The W- 1 AW rule has produced the same B as in equation (1). The matrices A and Bare 
similar. They have the same eigenvalues (1 and 0). And A is similar too. 

Notice that the projection matrix keeps the property A 2 = A and B2 = B and A 2 = A. 
The second projection doesn't move the first projection. 

The Singular Value Decomposition (SVD) 

Now the input basis VI, ..• , Vn can be different from the output basis U 1, ... , Um • In fact 
the input space Rn can be different from the output space Rm. Again the best matrix is 
diagonal (now m by n). To achieve this diagonal matrix l.;, each input vector v j must 
transform into a multiple of the output vector U j. That mUltiple is the singular value C5 j 

on the main diagonal of l.;: 

SVD A '''lC5jUj 
Vj = o 

for j < r 
for j > r 

with orthonormal bases. (3) 

The singular values are in the order al > C52 > ... > C5r • The rank r enters because (by 
definition) singular values are not zero. The second part of the equation says that v j is in 
the nUllspace for j = r + 1, ... , n. This gives the correct number n - r of basis vectors 
for the nullspace. 

Let me connect the matrices with the linear transformations they represent. A and 
l.; represent the same transformation. A = Vl.;VT uses the standard bases for Rn and 
Rm. The diagonal l.; uses the input basis of v's and the output basis of u's. The orthog
onal matrices V and V give the basis changes; they represent the identity transformations 
(in Rn and Rm). The product of transformations is IT I, and it is represented in the 
v and U bases by V-I AV which is :E. 
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The. matrix·Z ·iri·theu.·andv basescomes·fromA·in1:he standard'basesby •. tJ~tAV: 

:Ev's to u's = Ust~ndard to u's A standard Vv's to standard' (4) 

TheS\f])chqq~es()tth(m:otIn.l!~ ··b~ses(T.J-"'l . ..... ... 'tJT an4y=1 ..... , VT)·th~tG,lia~QIla..li.~~A.. 

The two orthonormal bases in the SVD are the eigenvector bases for AT A (the v's) and 
AAT (the u's). Since those are symmetric matrices, their unit eigenvectors are orthonormal. 
Their eigenvalues are the numbers o-j. Equations (10) and (11) in Section 6.7 proved that 
those bases diagonalize the standard matrix A to produce :E. 

Polar Decomposition 

Every complex number has the polar form re i (}. A nonnegative number r multiplies a 
number on the unit circle. (Remember that lei () I = I cos e + i sin e I = 1.) Thinking of 
these numbers as 1 by I matrices, r > 0 corresponds to a positive semidefinite matrix 
(call it H) and eiO corresponds to an orthogonal matrix Q. The polar decomposition 
extends this factorization to matrices: orthogonal times semidefinite, A = QH. 

Everyreatsql,la.fem~ttixcllnbe fa¢t()t~d. iIit9 A ........ . ~1l, whyr~t Q is. IJrt1tQg01l.a1 
anc;l. H. is sym11lemi:positive. semidefinjt~. If A. is iny~rtible,H is positjve. definjte. 

For the proof we just insert vT V = I into the middle of the SVD: 

Polar decomposition (5) 

The first factor U VT is Q. The product of orthogonal matrices is orthogonal. The second 
factor V:E VT is H. It is positive semidefinite because its eigenvalues are in :E. 

lf A is invertible then :E and H are also invertible. H is the symmetric positive definite 
square root of AT A. Equation (5) says that H2 = V:E 2 V T = AT A. 

There is also a polar decomposition A = K Q in the reverse order. Q is the same but 
now K = U:EUT. This is the symmetric positive definite square root of AAT. 

Example 3 Find the polar decomposition A = QH from its SVD in Section 6.7: 

A = [2 2] = [0 1] [v'2 ] [-I/v'2 1/v'2] = U:EVT. -1 1 1 0 2v'2 1/v'2 1/v'2 
Solution The orthogonal part is Q = U VT • The positive definite part is H = V:E VT . 

This is also H = Q-I A which is QT A because Q is orthogonal: 

Orthogonal 

Positive definite 
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In mechanics, the polar decomposition separates the rotation (in Q) from the stretching 
(in H). The eigenvalues of H are the singular values of A. They give the stretching factors. 
The eigenvectors of H are the eigenvectors of AT A. They give the stretching directions 
(the principal axes). Then Q rotates those axes. 

The polar decomposition just splits the key equation AVi = aiUi into two steps. 
The" H" part multiplies Vi by ai. The" Q" part swings Vi around into Ui . 

The Pseudoinverse 

By choosing good bases, A multiplies Vi in the row space to give aiUi in the column space. 
A-I must do the opposite! If Av = au then A-Iu = via. The singular values of A-I 
are I I a, just as the eigenvalues of A-I are II A. The bases are reversed. The u's are in the 
row space of A-I, the v's are in the column space. 

Until this moment we would have added "if A-I exists." Now we don't. 
A matrix that multiplies Ui to produce vii ai does exist. It is the pseudoinverse A +: 

Pseudoinverse 

A+·· __ V:E+uT 

11 by 11 

-1 ar 

11 by m 

T 

mbym 

The pseudoinverse A + is an n by m matrix. If A -1 exists (we said it again), then A + is the 
same as A-I. In that case m = n = r and we are inverting U ~ VT to get V ~-l UT . The 
new symbol A + is needed when r < m or r < n. Then A has no two-sided inverse, but it 
has a pseudoinverse A + with that same rank r: 

1 
A+Ui = -Vi for i < rand A+Ui = 0 for i > r. 

ai 

The vectors U 1, ... , U r in the column space of A go back to VI, ... , Vr in the row space. 
The other vectors Ur+l, . . . ,"um are in the left nullspace, and A+ sends them to zero. 
When we know what happens to each basis vector Ui , we know A +. 

Notice the pseudoinverse ~+ of the diagonal matrix :b. Each a is replaced by a-I. The 
product L:+ ~ is as near to the identity as we can get (it is a projection matrix, 
:b+~ is partly I and partly 0). We get r 1 'so We can't do anything about the zero rows and 
columns. This example has al = 2 and a2 = 3: 

The pseudoinverse A+ is the n by m matrix that makes AA+ and A+ A into projections: 
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row 
space 

nullspace 
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Pseudoinverse 

A+ A = [I 0] row space 
o 0 nullspace 

Figure 7.4: Ax + in the column space goes back to A + Ax + = x + in the row space . 

. -. - ,-" ,'-, ',-<. ,-- ~~ •.• '-:""'-, -.' - ~.- ~-. -. . -:,:~,,~ . .. .;<:.:.;:~;:,~. ;-...., . ~ ",.:: _ ,_ . '.", ;'."'.~:: '-;;;. '.:t"::':,,;" ' ... -<.':.:;. ',-' ~.~: ~'"::;~:;" .-,:): ~ :'- " -':' ",.:-. '; ~ '::: :' ~--;':",:. -,' '-,'.~ ",-: 

. :.~\~~Yiijg\:fQ,I,'j;i;,~·:(;,.;!(/<" AA + = projection matrix onto the column space of A 
:~::'i.~7:'f:,~t:i~0~·l1S~f';~·~~,iY;~;::1 A + A = projection matrix onto the row space of A 

_~: .'X.: .: .... <:~,:': ~:. >;,:, '_:" _:~~_-:, ,-_i-~}~,:'.·.~::· . .' :C,-:", • _ ~~ ... '-;." ," i;' :::- ;~. ",:.', -=- . -:. .. .... :,~..: _ - ~::·~-,·,;l :'.~..:~':-~:~ :'::-::.-: ..... '::' .. ::: .. :,:, ~.:,.",-, __ .;:-" ... ,-:;:.:':: _ . .' : _.::.~. 

Example 4 Find the pseudoinverse of A = [i i]. This matrix is not invertible. The 

rank is 1. The only singular value is .JIO. That is inverted to 1/.JIO in ~+: 

A+ = V~+UT = _1 [1 1] [1/.JIO 0] _1 [2 1] = ~ [2 1] Ji 1 -1 0 O..;s 1 -2 10 2 1 . 
'. 

A+ also has rank 1. Its column space is the row space of A. When A takes (1,1) in the row 
space to (4,2) in the column space, A+ does the reverse. A+(4, 2) = (1,1). 

Every rank one matrix is a column times a row. With unit vectors u and v, that is 
A = auvT. Then the best inverse of a rank one matrix is A+ = vuT la. The product 
AA+ is uuT, the projection onto the line through u. The product A+ A is vvT. 

Application to least squares Chapter 4 found the best solution x to an unsolvable system 
Ax = b. The key equation is AT Ax = ATb, with the assumption that AT A is invertible. 
The zero vector was alone in the nUllspace. 

Now A may have dependent columns (rank < n). There can be many solutions to 
AT Ax = ATb. One solution is x+ = A+b from the pseudoinverse. We can check that 



7.3. Diagonalization and the Pseudoinverse 405 

AT AA+b, is ATb, because Figure 7.4 shows that e = b - AA+b is the part of b in the 
nullspace of AT. Any vector in the nullspace of A could be added to x + , to give another 
solution x to AT Ax = ATb. But x+ will be shorter than any other x (Problem 16): 

The shortest least squares solution to Ax = b is x + = A + b. 

The pseudoinverse A + and this best solution x + are essential in statistics, because experi
ments often have a matrix A with dependent columns. 

• REVIEW OF THE KEY IDEAS • 

1. Diagonalization S-I AS = A is the same as a change to the eigenvector basis. 

2. The SVD chooses an input basis of v 's and an output basis of u's. Those orthonormal 
bases diagonalize A. This is AVi = O"iUi, and in matrix form A = UbVT. 

3. Polar decomposition factors A into Q H , rotation U VT times stretching Vb VT. 

4. The pseudoinverse A + = V b+ UT transforms the column space of A back to its 
row space. A+ A is the identity on the row space (and zero on the nullspace). 

• WORKED EXAMPLES • 

7.3 A If A has rank n (full column rank) then it has a left inverse C = (AT A)-I AT. 
This matrix C gives CA = I. Explain why the pseudoinverse is A + = C in this case. 
If A has rank m (full row rank) then it has a right inverse B with B = AT (AAT)-I. 
Then AB = I. Explain why A + = B in this case. 

Find B for Al and find C for A2. Find A+ for all three matrices AI, A2• A3: 

Solution If A has rank n (independent columns) then AT A is invertible-this is a key 
point of Section 4.2. Certainly C = (AT A)-l AT multiplies A to give CA = I. In the 
opposite order, AC = A(AT A)-I AT is the projection matrix (Section 4.2 again) onto the 
column space. So C meets the requirements to be A+: CA and AC are projections. 

If A has rank m (full row rank) then AAT is invertible. Certainly A multiplies B = 
AT(AAT)-l to give AB = I. In the opposite order, BA = AT(AAT)-I A is the projection 
matrix onto the row space. So B is the pseudoinverse A + with rank m. 
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The example Al has full column rank (for C) and A2 has full row rank (for B): 

Notice At Al = [1] and A2Ai = [1]. But A3 (rank 1) has no left or right inverse. 
Its rank is not full. Its pseudoinverse is At = a1lvlui = [~ ~ ]/4. 

Problem Set 7.3 

Problems 1-4 compute and use the SVD of a particular matrix (not invertible). 

1 (a) Compute AT A and its eigenvalues and unit eigenvectors VI and V2. Find al. 

Rank one matrix A = [~ ~ ] 

(b) Compute AAT and its eigenvalues and unit eigenvectors Ul and U2. 

(c) Verify that AVI = alul. Put numbers into the SVD: 

2 (a) From the u's and v's in Problem I write down orthonormal bases for the four 
fundamental subspaces of this matrix A. 

(b) Describe all matrices that have those same four subspaces. Multiples of A? 

3 From U, V, and b in Problem 1 find the orthogonal matrix Q = U VT and the 
symmetric matrix H = VbVT. Verify the polar decomposition A = QH. This H 
is only semidefinite because . Test H2 = A. 

4 Compute the pseudoinverse A+ = Vb+UT. The diagonal matrix b+ contains 
l/al. Rename the four subspaces (for A) in Figure 7.4 as four subspaces for A+. 
Compute the projections Prow = A + A and P column = AA + . 

Problems 5-9 are about the SVD of an invertible matrix. 

5 Compute AT A and its eigenvalues and unit eigenvectors VI and V2. What are the 
singular values al and a2 for this matrix A? 
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6 AAT has the same eigenvalues at and ai as AT A. Find unit eigenvectors Ul and U2-
Put numbers into the SVD: 

7 In Problem 6, multiply columns times rows to show that A = alUl vI + a2u2vi. 
Prove from A = U ~ VT that every matrix of rank r is the sum of r matrices of rank 
one. 

8 From U, V, and ~ find the orthogonal matrix Q = U VT and the symmetric matrix 
K = U~UT. Verify the polar decomposition in reverse order A = KQ. 

9 The pseudoinverse of this A is the same as __ because __ 

Problems 10-11 compute and use the SVD of a 1 by 3 rectangular matrix. 

10 Compute AT A and AAT and their eigenvalues and unit eigenvectors when the matrix 
is A = [3 4 0]. What are the singular values of A? 

11 Put numbers into the singular value decomposition of A: 

Put numbers into the pseudoinverse V~+UT of A. Compute AA+ and A+ A: 

12 What is the only 2 by 3 matrix that has no pivots and no singular values? What is ~ 
for that matrix? A + is the zero matrix, but what shape? 

13 If det A = 0 why is detA,.+ = O? If A has rank r, why does A+ have rank r? 

14 When are the factors in U~VT the same as in QAQT? The eigenvalueS.Ai must be 
positive, to equal the ai. Then A must be and positive __ 

Problems 15-18 bring out the main properties of A + and x+ = A +b. 

15 All matrices in this problem have rank one. The vector b is (b 1 , b2 ). 

A = [i i] AT =[.2 .1] 
.2 .1 

AAT = [.8 .4] 
.4 .2 

AT A = [.5 .5] 
.5 .5 

(a) The equation AT Ax = ATb has many solutions because AT A is __ 

(b) Verify that x+ = A+b = (.2b 1 + .lb2 , .2b1 + .lb2 ) solves AT Ax+ = ATb. 
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(c) Add (1, -1) to that x + to get another solution to AT Ax = AT b. Show that 
IIxl!2 = Ilx+112 + 2, and x+ is shorter. 

16 The vector x+ = A +b is the shortest possible solution to AT Ax = ATb. 
Reason: The difference x -x+ is in the nullspace of AT A. This is also the nullspace 
of A, orthogonal to x+. Explain how it follows that IIxl12 = Ilx+112 + Ilx - x+112. 

17 Every b in Rm is p + e. This is the column space part plus the left nullspace part. 
Every x in Rn is x r + X n = (row space part) + (nullspace part). Then 

AA+p = __ A+Ax r =--

18 Find A+ and A+ A and AA+ and x+ for this 2 by 1 matrix and these b: 

b = [!] and b = [ -~] . 
19 A general 2 by 2 matrix A is determined by four numbers. If triangular, it is deter

mined by three. If diagonal, by two. If a rotation, by one. An eigenvector, by one. 
Check that the total count is four for each factorization of A: 

Four numbers in LU LDU QR U:EVT SA.S-1
• 

20 Following Problem 19, check that LDLT and QA.QT are determined by three num
bers. This is correct because the matrix A is now __ 

21 From A = U:E V T and A + = V:E + U T explain these splittings into rank 1: 

r 

A = L (J"iujvT 
1 

Challenge Problems 

r 

AA+ = LUiuT 
1 

22 This problem looks for all matrices A with a given column space in Rm and a given 
row space in Rn. Suppose c 1, ... , C rand b 1, ... ,br are bases for those two spaces. 
Make them columns of C and B. The goal is to show that A = eM B T for an r by 
r invertible matrix M. Hint: Start from A = U:E VT. A must have this form: 

The first r columns of U and V must be connected to C and B by invertible matrices, 
because they contain bases for the same column space and row space. 

23 A pair of singular vectors v and U will satisfy A v = (J" U and AT U = (J" v. This means 

that the double vector x = [:] is an eigenvector of what symmetric block matrix? 

What is the eigenvalue? The SVD of A is equivalent to the diagonalization of that 
symmetric block matrix. 




